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SUMMARY 
A numerical optimization approach is introduced to the subject of dynamo theory. 
Conventional kinematic dynamo studies treat the induction equation as an eigenvalue 
problem by choosing a candidate velocity field and solving for a marginally stable 
solution of magnetic field and critical magnetic Reynolds number. The conventional 
approach has told us something about dynamo action and magnetic field morphology 
for specific velocities, but the arbitrary choice of fluid flow is a hit-or-miss affair; not 
all velocities sustain dynamo action, and of those that do, few yield mathematically 
tractable solutions. As a result, progress has been slow. Here we adopt a new approach, 
a non-linear numerical variational approach, which allows us to solve the induction 
equation simultaneously for both the magnetic field and the velocity field. The induction 
equation is discretized following the Bullard-Gellman formalism and the resulting 
algebraic equations solved by an iterative, globally convergent, Newton-Raphson 
method. The particular choice of optimization constraints allows one to design a 
dynamo which satisfies certain conditions; in this paper we minimize a linear combi- 
nation of the kinetic energy (magnetic Reynolds number) and a smoothness norm on 
the magnetic field to produce efficient (low magnetic Reynolds number) well-converged 
(smooth magnetic field) solutions. We illustrate the optimization method by designing 
two dynamos based on a Kumar-Roberts velocity parametrization; a specific choice 
of the velocity parameters, KR, sustains a 3-D kinematic model of the geodynamo. 
Compared with KR, one of our new models, LG1, is designed to have a higher 
magnetic Reynolds number but smoother magnetic field, and the other, LG2, a lower 
magnetic Reynolds number and somewhat rougher magnetic field. We suggest that 
dynamo efficiency, defined by the magnetic Reynolds number, is achieved through 
reduced differential rotation and a favourable spatial distribution of the helicity. These 
examples demonstrate the value of the optimization method as a tool for exploring 
dynamo action with geophysically realistic flows. It can be extended to the dynamic 
dynamo problem and, by changing the constraints, be used to design dynamos with 
good numerical convergence, which match the observed geomagnetic surface field 
morphology and which place useful quantitative constraints on the physical nature of 
the geodynamo. 
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1 INTRODUCTION 

A dynamo converts mechanical energy into magnetic energy. 
For the geomagnetic field, convective motion in the Earth’s 
liquid iron outer core provides the requisite mechanical energy; 
advective amplification of the magnetic field offsets the destruc- 
tive effect of diffusion. Modelling of the geodynamo usually 
takes the form of a deterministic numerical experiment. In a 
dynamic experiment one investigates magnetic induction by a 
convecting fluid and the forces necessary to sustain the fluid 
motion as determined by the full set of magnetohydrodynamic 

equations, namely the induction equation, the Navier-Stokes 
equation of motion, and an equation describing the convective 
energy source, either thermal or compositional buoyancy. In 
a kinematic analysis, such as that conducted here, one investi- 
gates the types of fluid motions which sustain dynamo action, 
regardless of the forces necessary to maintain the flows, by 
solving only the magnetic induction equation, 

8,B = R,V x (U x B) + V’B, (1) 

where B = BePt denotes the time-dependent magnetic field, p 
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is the complex growth rate, and u is the dimensionless fluid 
velocity. The magnetic Reynolds number is R ,  = poUc, where 
U and c are typical core velocities and length-scales, respect- 
ively (see Table l) ,  and (po)-' is the magnetic diffusivity. R, 
gives a measure of the effectiveness by which fluid motion acts 
to amplify the magnetic field compared to the rate, zd = pot', 
at which the magnetic field decays due to electrical resistance. 
If BL [p(R,)]  2 0 then we have dynamo action, otherwise the 
magnetic field decays. For the marginal state, 9% [ p ( R g ) ]  = 0, 
advective amplification and diffusive decay are in balance and 
if Y i  ( p )  = 0 then the magnetic field is steady, otherwise it is 
oscillatory with frequency Y&.(p)/(2n). RZ is called the critical 
magnetic Reynolds number. It is desirable, from a geophysical 
standpoint, to find dynamos which have magnetic Reynolds 
numbers like that of the core, R ,  = O( 100). 

At first glance the ,kinematic dynamo problem seems entic- 
ingly simple: for a given velocity field, u, eq. (1) is linear and 
a solution can be sought by treating it as an eigenvalue 
problem, where B is the eigenvector. This bold, if straight- 
forward, approach for the case of a fluid sphere was attempted 
by Bullard & Gellman (1954). By expanding both the velocity 
field and magnetic field in terms of spherical harmonics and 
radial grid points, Bullard & Gellman reduced the induction 
equation to a large matrix equation, amenable to standard 
numerical techniques. The apparent simplicity of this approach 
is beguiling, however. In fact, the numerical treatment of the 
3-D spherical kinematic dynamo problem has proven to be 
remarkably difficult, and apparent solutions have subsequently 
been shown to be spurious, as was the case for the velocity 
field chosen by Bullard & Gellman. 

The difficulty arises because advection tends to twist and 
tangle the magnetic field, thereby producing a field which is 
spatially complex, having energy at small length-scales (high 
spherical harmonic degree), and making it difficult to represent 
numerically. Diffusion reduces the magnetic energy at short 
length-scales, but only to a limited extent because the very 
nature of dynamo action is a non-trivial balance between 
advective amplification and diffusive destruction of the mag- 
netic field. However, for many velocity fields, the generation 
of short-length-scale magnetic energy is sufficient to prevent a 
low-degree truncation of the spherical harmonic expansion of 
the magnetic field. In fact, because of limitations of computer 
power, it is commonly impossible to consider a harmonic 
expansion large enough to ensure numerical convergence; in 
such cases it is impossible to tell if the velocity field supports 
dynamo action, since a balance between advection and 
diffusion may occur at spherical harmonic degrees well beyond 
the level of truncation. Hence, one of the main problems vexing 
kinematic dynamo theory is numerical convergence. 

Seeking to avoid the obvious difficulties presented by eq. ( l ) ,  
Steenbeck, Krause & Radler (1966), motivated by the early 
work of Parker (1955), developed the theory of mean-field 
electrodynamics.' In their theory an average is taken over the 

short length-scales and rapid fluctuations of turbulence to 
obtain a mean induction equation, 

d , 8  = R,V x (as + B x 8) + V z 8 ,  (2) 

where the overbar denotes a spatial and temporal average. 
The new term in this equation, as,  represents the so-called 
a-effect, where LY is linearly related to the mean helicity, 

h = u * V  x u  (3) 
(Moffatt 1978). A related dynamo theory, developed shortly 
before that of Steenbeck, Krause & Radler, is the nearly 
axisymmetric dynamo of Braginsky (1964). With a spherical 
geodynamo in mind, Braginsky constructed a nearly axi- 
symmetric dynamo with an a-effect arising from azimuthal 
averaging that is valid in the limit R ,  -+ m. Mean-field electro- 
dynamics and model-Z allow for a convenient quantitative 
expression of Parker's (1955) aw mechanism. The w-effect, 
supported by differential rotation, causes a pre-existing, pri- 
marily dipolar, poloidal field to be wound about the rotational 
axis, thereby producing a quadrupolar toroidal field. Fluid 
upwelling, with the appropriate amount of helicity, lifts and 
twists the toroidal field, thereby producing loops of poloidal 
field by the a-effect. These loops of poloidal field coalesce and 
reinforce the pre-existing dipolar field, thus completing the 
dynamo cycle. The saving grace of mean-field electrodynamics 
and model-Z is that they circumvent Cowling's theorem. This 
allows for dynamos which, in the mean, are axisymmetric, thus 
permitting numerically convergent solutions, simpler than 
those obtained for the fully 3-D induction equation (1). 

There is no doubt that we have learned more about the 
dynamo process from studies of the aw equations than from 
direct attacks on the 3-D induction equation. However, the 
stringent assumption that a net a-effect could arise from very 
short-length-scale, chaotic motion of turbulence is of question- 
able applicability to the Earth's core; the energetics are prob- 
ably insufficient to sustain sufficiently turbulent motion with 
the Coriolis and the Lorentz forces acting together to produce 
large-scale fluid motion. Specifically, for model-Z (Braginsky 
1964) the necessary energy is geophysically excessive; the fluid 
flow is too fast (-4.7 x m s-') and the toroidal field is 
too strong (- 74 mT), consequences of model-Zs requisite 
large magnetic Reynolds numbers. Moreover, the geomagnetic 
field exhibits significant deviations from axisymmetry, a prop- 
erty which is explicitly excluded from model-Z. Thus, despite 
attendant difficulties, any complete theory of the geodynamo 
must consider the 3-D induction equation (1). 

The few 3-D kinematic dynamos that do sustain well- 
behaved magnetic fields have been found, with great effort, by 
trial and error. It is this arbitrary search for solutions that is 
perhaps the most unsatisfactory aspect of a kinematic dynamo 
analysis and is largely responsible for its difficulty: some 
velocity fields act as dynamos and some do not. Of those that 
do, few yield numerically tractable solutions and fewer still 

Table 1. Numerical values used in this analysis. 
Symbol Value 

p Magnetic permeability 47r x H/m 
c Radius of the core 3.5 x 10' m 
U Typical fluid velocity in the core N lo-* m/s 
B, Typical strength of the radial field at  the CMB N 3 x T 
0 Electrical conductivity of the core - 3 x lo5 S/m 
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sustain fields that bear any resemblance to the observed 
geomagnetic field. Moreover, a physically reasonable R, 
cannot be imposed as it is an intrinsic parameter of the 
9uid flow. 

In this paper we introduce a means of searching systemati- 
cally for suitable velocity fields. Rather than imposing the 
velocity field and treating the induction equation as a linear 
eigenvalue problem, in our non-linear approach the velocity 
field and magnetic field are both treated as unknown variables. 
Solutions to the induction equation are obtained, subject to 
smtraints on the magnetic and velocity fields, using standard 
optimization techniques. We are guided by the success of 
geophysical inverse theory: we call the conventional approach 
to the dynamo, where the magnetic field is determined after 
imposing a velocity field, the forward method, and the new 
approach, where both the magnetic and velocity fields are 
solved subject to prescribed constraints, the optimization or 
inverse method. 

We are not the first to adopt this approach: Cowling (1934) 
proved his celebrated anti-dynamo theorem by an inverse 
method. Constraining the magnetic field to be axisymmetric, 
Cowling attempted to solve for both the velocity and magnetic 
field. Since no solutions exist, he proved that axisymmetric 
magnetic fields cannot be sustained by dynamo action. 
However, dynamo solutions can be found by adopting con- 
straints that are less restrictive than those of Cowling: by 
choosing different constraints we can design a range of solu- 
tions to answer specific questions. For example, in this paper 
we obtain numerically convergent kinematic dynamos with 
physically plausible magnetic Reynolds numbers by minimizing 
a weighted combination of the kinetic energy and a smoothness 
norm on the magnetic field. 

2 THE FORWARD PROBLEM 

2.1 The Bullard-Gellman formalism 

The behaviour of the geomagnetic field is complex: over 
historical times the field at the core surface has exhibited static, 
rapidly drifting and oscillating features (Bloxham & Gubbins 
1985), and of course the magnetic field occasionally undergoes 
a reversal. But recent analysis of palaeomagnetic data (Gubbins 
& Kelly 1993) reveals that much of the field can, over very 
long time-scales, be characterized as steady. For this reason, 
and for the sake of simplicity, we seek only steady dynamo 
solutions, although time-dependent solutions have also been 
extensively studied. By prescribing u in eq. (l), we have the 
generalized eigenvalue problem, 

V X ( U X B ) =  -R,'VZB, (4) 

where B is the eigenvector and - R i l  is the eigenvalue. It is 
this steady problem that Bullard & Gellman (1954) attempted 
to solve by the spectral method. 

As an approximation to the Earth, let us consider a con- 
ducting fluid sphere of unit radius, r = 1, representing the core, 
surrounded by a solid electrical insulator, representing the 
mantle. It is natural, then, to use spherical coordinates (r, 8,#) 
where r is the position vector and f is the unit vector pointing 
outwards from the centre of the sphere. Since the magnetic 
field is solenoidal, 

V*B=O, (5) 

we can represent the magnetic field in spherical coordinates 
by its toroidal and poloidal ingredients, 

B = T  + s = 1 B;" = 1 (T;" + s;"). (6) 
2.m 1.m 

The toroidal and poloidal vectors, T (r, 8,4) and S(r,  8, $), are 
defined as 

T = V x (Ti), S = V x V x (Yf), (7) 

where the toroidal and poloidal scalar functions are F ( r ,  8,#) 
and Y (r, 8,#). The individual vector components B;"(r, 8, #), 
T;"(r, 0, #) and Sr(r, 8, 4) are 

B;"=T;"+ST, Tr=Vx(T;"Y;"i), 

s r = v  x v x (S;"Y;"f), 

where T;"(r) and s;"(r) are the toroidal and poloidal radial 
functions. The spherical harmonics, YT(0, #), are 

(9) 

where P;"(cos 8) is a Schmidt-normalized associated Legendre 
function. Thus, 

where the integration is over all solid angles dQ. For simplicity 
we shall assume that the fluid in the core is incompressible, 

v . u = o ,  (11) 

and thus, like the magnetic field, the velocity field may be 
represented by its toroidal and poloidal ingredients, 

u = t + s =  1 (tT+S;"). (12) 
1, m 

Spherical harmonic expansions for the velocity field are similar 
to those for the magnetic field. 

Ampere's law in pre-Maxwell form relates the electric current 
to the magnetic field, 

V x B = J ,  (13) 

where J is the dimensionless current density. Thus, 

V x T =  V x V x (Yf), V x S = V  x [ ( - V z 9 ) i ] ,  (14) 

which shows that toroidal fields are sustained by poloidal 
currents and vice versa. Insofar as the mantle is an insulator, 
the potential field in the mantle is a special case of a poloidal 
field and is sustained by electric currents in the core. On the 
other hand, a toroidal field, being entirely non-potential, is 
trapped within a conductor; consequently toroidal magnetic 
fields vanish at and above the core's surface. In the mantle, 
then, 

B = -V@. (15) 

If we require that the magnetic field be entirely internally 
sustained, in other words that there are no external sources, 
then the potential is described by the expansion 

The magnetic field is continuous at the core's surface and must 
match onto a potential field; thus, after equating components, 
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we obtain the boundary conditions 

asy i 
TT=O, -+-S"-  I -0 ,  a t r = l .  (17) ar r 

At the origin regularity requires that 

T T = O ( r ' + l ) ,  S y = O ( r ' + ' ) ,  at r = O .  (18) 
If the magnetic field is non-zero and satisfies the steady 
induction equation, then enforcement of the boundary con- 
ditions (17) and (18) is tantamount to requiring dynamo action 
in the region 0 < r < 1. 

After substituting eqs (6) and (12) into eq. (4), Bullard & 
Gellman obtained the infinite set of ordinary differential 
equations 

C F?(t;"2Z,sT2) T?,S?)= -R;l[rZ~:T;l-ll(I,+ l)T;lI, 
b , m z  
139m3 

(19) 
1 G;l(ty, s;"2Z, T T ,  S?) = -R;'[r2@S? - 11(11 + l)S?l,  

1 2 . m ~  
139% 

(20) 
where FCl and GE1, which depend on Gaunt and Elsasser 
integrals, are complicated bilinear functions of the velocity 
harmonic coefficients ( t y ,  s y )  and magnetic field harmonic 
coefficients (T;",ST), as well as their first and second radial 
derivatives. To find a solution to eqs (19) and (20), Bullard & 
Gellman divided the range 0 5 r 2 1 into M equal parts. After 
approximating the radial derivatives by finite differences and 
truncating the spherical harmonic expressions they obtained a 
coupled set of algebraic equations, which, with enforcement of 
the boundary conditions, (17) and (18), can be written in the 
form 

A (U 0 b) = - R i l  D * b , (21) 
which should be compared with eq. (4). In this notation, the 
magnetic field is represented throughout the volume of the 
core by the vector b, where an individual element bi is a 
spherical harmonic coefficient for either the toroidal or poloidal 
magnetic field ingredient at a given radial grid point. Likewise, 
u represents the velocity field at all points throughout the 
volume of the core, individual elements being ui. The advection 
tensor A is of third order, u 0 b is a dyad (see e.g. Malvern 
1969), and the contraction Z j , k  Aijkujbk is the ith element of 
the vector A (u Q b). Diffusion is represented by the matrix 
D, and the product D - b is a vector. 

The reduction of the induction equation to the form of 
eq. (21) makes it amenable to standard numerical methods. 
With the specification of u, the equations are linear in b and 
inverse iteration can be used to locate both the eigenvalue 
-RA1 and the eigenvector b, provided u sustains dynamo 
action and truncation of the spherical harmonic and radial 
grid-point expansions is not made so prematurely that numeri- 
cal convergence cannot be ensured. The usual procedure then 
is to truncate the radial representation at M grid points and 
the spherical harmonic expansion at degree and order N ,  
locate the eigenvalue and eigenvector, then increase both M 
and N and again locate the eigenvalue and eigenvector. If after 
successive increases in the level of truncation both the eigen- 
value and eigenvector are unchanged to within a numerically 
small and tolerable amount, then the result may be judged 
convergent and we conclude that we have a solution to the 

induction equation (Gubbins 1973). Otherwise, if successive 
increments of M or N give intolerably different results, no 
solution is obtained and the velocity field is deemed incapable 
of supporting numerically convergent magnetic fields. In prac- 
tice, checking for numerical convergence can require a substan- 
tial amount of computer power and for this reason, as we 
discuss in the next section, some apparently valid results have 
later been shown to be illusive. 

2.2 Previous investigations 

The history of 3-D kinematic dynamo theory has been one of 
frustration. Bullard & Gellman ( 1954), initiating the subject, 
investigated the velocity 

u = t: + & S F ,  (22) 

where E is an adjustable parameter and the radial dependence 
of t:(r) and $(r)  is fixed. This velocity field was an attempt to 
simulate the motion in the core; differential rotation, ty, 
inspired by the observed westward drift of the Earth's magnetic 
field and laboratory simulations of rotating convective systems, 
is thought to be the dominant motion in the core, with some 
poloidal overturn-they chose $-being both a necessary 
ingredient for dynamo action and a consequence of internally 
driven convection. Initially, it appeared that Bullard & 
Gellman found a convergent stationary dynamo, but, unfortu- 
nately, subsequent checks with higher levels of truncation 
(Gibson & Roberts 1969) showed that eq. (22) does not sustain 
numerically convergent solutions. It appears, at least for their 
choice of radial dependence, that dynamo action is not possible 
for this velocity field. Indeed, Braginsky (1964) showed that 
flows such as (22), which possess a plane of mirror symmetry 
containing the rotation axis, do not behave as dynamos in the 
limit R, --+ 00. Lilley (1970) removed the offending symmetry 
by considering the flow 

u = t: + s:. + sp, (23) 

reporting that this led to convergent solutions. Once again, 
however, more rigorous checks (Gubbins 1973) showed that 
convergence was not attained for Lilley's choice of radial 
functions, although later investigations (Hutcheson 1990; 
Nakajima & Kono 1991; Hutcheson & Gubbins 1990) showed 
that modification of the radial functions in the Lilley dynamo 
can yield converged solutions. 

Gubbins (1973) and Pekeris, Accad & Shkoller (1973) 
introduced several flows which, as subsequent analyses have 
confirmed, sustain numerically convergent magnetic fields. 
Although these studies convincingly demonstrated 3-D 
dynamo action for the first time, none of their flows, nor the 
magnetic fields that they support, possess the symmetries 
characteristic of the core. Gubbins & Bloxham (1987) have 
pointed out a nearly stationary, four-fold symmetry in the 
historical magnetic field and Gubbins & Zhang (1993) have 
summarized the symmetries thought to characterize the geo- 
dynamo. In short, it is desirable, at least from a geophysical 
standpoint, to find dynamos with magnetic fields antisymmetric 
under reflection through the equatorial plane, EA,  sustained 
by flows which are mirror symmetric about the equatorial 
plane, ES,  as emphasized by Busse (1983). Moreover, analyses 
of historical and modern measurements of the geomagnetic 
field made over the last 400 years (Bloxham, Gubbins & 
Jackson 1989) and palaeomagnetic data over geological time- 
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scales (Gubbins & Kelly 1993; Johnson & Constable 1995) 
indicate that the geodynamo can be characterized as symmetric, 
at least roughly, under rotation about the geographic axis by 
an angle of TC radians, a symmetry denoted as P s .  In addition 
to lending a bit of geophysical realism, enforcement of the 
E4P; symmetry, which is just one of the many symmetries 
cornistent with the induction equation, has the benefit of 
rducing by a factor of four the number of terms in the 
spherical harmonic expansions, thereby substantially reducing 
:he size of the matrix equation (21). 

Kumar & Roberts (1975) found numerically convergent 
magnetic fields possessing the EAP!  symmetry using the flow 

(24) u = &of? + &IS; + EZS:S + &3S?, 
which itself has the requisite E S  symmetry. The defining scalars 
are 

sp = r4( 1 - r2)’ sin(pr), (28) 

where { E ~ , E ~ , E ~ , E ~ } ,  and p are parameters. Aside from 
satisfying the desired symmetries, this flow, like others used in 
kinematic dynamo theory, is in detail arbitrary, although in a 
geophysical context it is qualitatively appropriate. The toroidal 
motion, ty, induces an w-effect, creating toroidal magnetic field 
from poloidal field, and the sectoral harmonics, s? and sp, 
contribute to convective overturning. This flow also contains 
a meridional circulation, s;, which Roberts (1972) found to 
promote steady solutions in aw-dynamos. The parameter p in 
eqs (27) and (28) determines the number of convective cells in 
the radial direction; throughout this analysis we shall take p = 
371. The velocity components (25)-(28) are shown in Fig. 1. 

Kumar & Roberts found that their dynamo is sensitive to 
the choice of {c0, cl, cZ, e 3 ) ,  reporting a particularly well- 
converged solution for the combination { 1.000, 0.030, 0.040, 
0.040). These values give a dynamo with R, N 3850. A more 
appropriate definition of R,  uses a volume average to scale 
the velocity field, 

U = ( u > ,  (29) 
where we define 

and where C denotes integration over the volume of the core, 
V. With this scaling this model, hereafter referred to as KR, 
has the velocity parameters (4.410, 0.132, 0.176, 0.176}, with 
dynamo action occurring for R, N 900. Unfortunately, this R,  
is uncomfortably large in a geophysical context. However, we 
must ,emphasize that this was not a concern for Kumar & 
Roberts, since they were more interested in checking the 

validity of Braginsky’s dynamo where R,  + co. The properties 
of the models are given in Table 2. 

From our standpoint, the main advantage of the Kumar & 
Roberts velocity field (24) is its ability to sustain a numerically 
convergent steady magnetic field, and for this reason we have 
selected it to illustrate our optimization procedure. Hutcheson 
& Gubbins (1994) have remarked that (24) sustains a surface 
magnetic field that possesses four high-flux patches coincident 
with fluid downwelling, which bear some resemblance to the 
Earth‘s magnetic field at the core-mantle boundary: two in the 
Northern Hemisphere of one polarity and, since the dynamo 
field has EA symmetry, two in the Southern Hemisphere of the 
opposite polarity. Such fortuitous geophysical verisimilitude 
is, from our perspective, satisfying. 

3 THE O P T I M I Z A T I O N  P R O B L E M  

Since a spatially complex magnetic field is difficult to describe 
mathematically by a finite expansion of basis functions, we 
seek velocity fields which sustain spatially simple, and therefore, 
it is hoped, numerically convergent magnetic fields with geo- 
physically plausible magnetic Reynolds numbers. One way of 
promoting numerical convergence is to seek those dynamos 
which minimize some measure of the spatial complexity of the 
magnetic field. For example, we can seek the dynamo which 
minimizes (V’B), for some non-trivial magnetic field strength. 
Of course V2B is related to R,, and it might be thought that 
dynamos with a minimum R,  could be similar to those with 
a minimum (V’B). But this is certainly an oversimplification, 
since R, is a constant scalar whilst the vector VZB is spatially 
variable, and they are really only related to each other through 
the rather complicated advective term of the induction 
equation. From a geophysical standpoint, though, it is desir- 
able to obtain a relatively small magnetic Reynolds number 
appropriate for the Earth’s core, R,  = O( 100). 

Thus, to study the relationship between spatial complexity 
of the magnetic field and magnetic Reynolds number, it seems 
sensible to find those solutions that minimize some weighted 
combination of both R,  and (V’B). Such an objective can be 
attained by numerical optimization. To that end, we pose a 
variational problem, seeking a minimum of the non-linear 
non-dimensional functional 

Y(R,u, B, q, y) = v,(R,u)~ + V~(V‘B)~ 

+ S c 9 . C ~ x ( R , u x B ) + V Z B , d V  

+Yc(B>2--11> (31) 

where the components of the vector function q and the scalar 
y are Lagrange multipliers. Note that we have combined the 
magnetic Reynolds number and the velocity field in the aug- 
mented variable R,u, and if we define R, so that 

( u > = l ,  (32) 

Table 2. Properties of the three dynamo models. 

(B)’= 1 I/ B,, I/ = 1 (h) = 1 Geophysical quantities 

Model E,, E’ c3 R,  (V’B)’ (5)’  (T)’ ( S ) ’  (BAS)’ (BNA)’ (B)’ l h l N  (B) (mT) Q(10” W) 
KR 4.400 0.132 0.176 0.176 900 6880 63.4 0.994 0.006 0.989 0.011 16000 0.21 37.9 2.81 
LG1 4.410 0.039 0.144 0.159 1400 5 090 56.7 0.997 0.003 0.991 0.009 32 700 0.12 54.2 5.14 
LG2 3.686 0.689 0.770 0.752 144 13 000 73.4 0.873 0.127 0.909 0.091 324 2.78 5.4 0.07 
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Figure 1. Velocity components: (a) contours of toroidal flow ty in 
meridian section; (b)'streamlines of the poloidal Row component s: in 
meridian section; (c) streamlines of the poloidal flow component 
s? + sp in equatorial section. 

then 

R, = (R,u) . (33) 

Thus, after effecting the minimum of Y, by adjusting the 
variables {R,u,B,q, y }  in the manner described below, we 
obtain the magnetic Reynolds number R,, the velocity field u 

and the magnetic field €3, which are consistent with dynamo 
action and which minimize a combination of R, and (V2B), 
the relative weighting being determined by the adjustable 
parameters v1 and v2. The last term in eq. (31) is a non- 
triviality constraint, designed to ensure that our normalization, 

( B ) = l ,  (34) 

holds; we are free to choose a normalization, such as this one, 
on account of the linearity in B of the induction equation. 

Following the treatment of Bullard & Gellman (1954), we 
express the velocity and magnetic fields in terms of their 
poloidal and toroidal scalar functions, and then express these 
scalar functions in terms of spherical harmonic expansions and 
radial grid points. R,u, B and q are then completely described 
throughout the volume of the core by vectors of model 
coefficients u,, b and q respectively. After enforcing the 
boundary conditions, the functional (31) can be expressed in 
matrix notation as 

V(X) = vlUR - N * U R  + v2b * M b + q .A: (UR 0 b) 

+ q * D * b + yb * L .  b - y ,  

where the vector x is defined as 

X =  

(35) 

and where we note that q is a vector of the same length as b. 
A minimum of Y is obtained where the set of non-linear 
algebraic equations f(x) equals zero, 

f (x)=&Y = o ,  (37) 

where 

r 2v, N * u, + AT"=: (q @ b) 1 

L b . L * b - 1  J 
and where, for example, Tq" denotes the transpose with respect 
to q and uR. Notice that the third row in the column vector 
(38) is the induction equation and the fourth row is the 
normalization condition; thus at f(x) = 0 both the induction 
equation and the normalization condition are satisfied. 

We solve f(x)=O using an iterative globally convergent 
Newton-Raphson technique; see, for example, Dennis & 
Schnabel (1983). Starting from an initial guess xo, we expand 
f i n  a Taylor series, 

f(xo + 6x) = f (x0) + J 6x + 0(6x2), (39) 

where the Jacobian is 

2b0*L 0 
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Taking f(xo + 6x) = 0, we obtain the set of linear equations 

I-Sx= -f(xo), (41) 

which we solve for 6x by using LU decompositon, taking full 
advantage of the sparsity of J to save on computer memory. 
Since the full Newton step 6x may move us outside the 
quadratic approximation of (39), we obtain the new vector x1 
b! moving possibly only partway along the direction 6x. Thus 

x, = xo + tax, (42) 0 < 5 I 1, 

wnere 5 is adjusted so that 

(43) 

thereby ensuring that x1 is always an improvement upon 
the initial guess xo. Once we have xl, we make the reassign- 
ment x1 -+ xo and repeat the process until some prescribed 
convergence criterion is satisfied. 

In practice, we have found it useful to use a dynamo as an 
initial guess; in other words, we use a combination {R,u, B} 
which satisfies the induction equation. We use zero as the 
initial guess of the Lagrange multipliers. As with the forward 
problem, once we have the desired optimized solution, we 
must, for the given truncation level, check for numerical 
convergence. This is best done by fixing u, then solving the 
eigenvalue problem (4) for different levels of truncation, as we 
would for an ordinary kinematic dynamo problem by the 
method described at the end of Section 2.1. The set {R,u, B) 
obtained by solving the eigenvalue problem should be the 
same as that obtained by optimization; such a comparison 
obviously functions as a useful test of the optimization code. 

4 OPTIMIZING THE K U M A R  & ROBERTS 
VELOCITY FIELD 

4.1 

Although a general parametrization of the velocity field is 
permissible in the above optimization procedure, in terms of 
spherical harmonic coefficients and radial grid points for 
example, here we limit ourselves to the four free velocity 
parameters of Kumar & Roberts in eq.(24). The vector 
describing the product of magnetic Reynolds number and 
velocity then takes the simple form 

Construction and comparison of models 

R,u = R,(EOty + E l $  + E ~ S P  + E ~ S ? ) ,  (44) 

U R = U R ( R ~ { E O , E ~ , E Z , E , S ) .  (45) 

so that 

With this limited velocity field we have succeeded in locating 
a suite of dynamos, two of which we discuss here. The first 
model, designated LG1, was obtained by minimizing Y of 
eq. (31) for magnetic roughness, (V’B), by simply setting 
v1 =0, ‘and v 2  equal to a small positive value. The second 

model, LG2, was obtained by minimizing a combination of 
both R, and (V’B). The details of both of these models are 
presented in Table 2. Following Gubbins (1973), and as we 
discussed at the end of Section 2.1, we check the convergence 
properties of these two models, along with those of KR, by 
comparing both the magnetic Reynolds number, Table 3, and 
the eigenfunctions, Fig. 2, for differing levels of truncation 
(M,  N ) .  Fig. 2 may be compared with Fig. 2 of Hutcheson & 
Gubbins (1994) for the KR model. Clearly, KR, LG1 and LG2 
are all well-converged dynamos: substantial increases in the 
level of truncation do not significantly change either R, or the 
eigenfunctions for ( M ,  N )  2 (150, 10). 

Table 2 illuminates some of the differences between the three 
dynamo models. Since we obtained LGl by minimizing (V’B), 
after using KR as an initial guess, LG1 necessarily supports a 
smoother magnetic field than KR, whilst LG2, again on 
account of the type of minimization applied, has a smaller R, 
than either KR or LG1. The average current density, (J), for 
the unit normalization of the magnetic field (34), is least for 
LG1 and greatest for LG2. Other differences between the 
models are apparent when one compares the relative pro- 
portions of toroidal magnetic energy and poloidal magnetic 
energy, defined respectively as 

<T)’= c (TI”)’, (S>’= 1 (ST)’, (461 
I,m Ism 

or the relative proportions of axisymmetric energy with non- 
axisymmetric energy, defined respectively as 

  BAS)'=^ (Biv~)’= c (BY)’- (47) 
1 Ism 

(m f 0) 

Dynamos KR and LG1 have greater proportions of axisym- 
metric and toroidal magnetic energies than does LG2. This is 
consistent with the w-effect; KR and LG1 have a greater 
proportion of their fluid motion, as measured by c0, in the 
form of differential rotation than does LG2, and as a result 
the toroidal magnetic field, primarily the axisymmetric quadru- 
polar component, is proportionately stronger in KR and LG1 
than in LG2. Conversely, LG2 has a greater proportion of 
non-axisymmetric and poloidal energies than do KR and LGI, 
a fact consistent with a greater proportion of convective motion 
in LG2, as measured by E’ and c3, which causes a relative 
amplification of the non-axisymmetric poloidal field via the 
a-effect. 

The magnetic energy for each model, given as a function of 
harmonic degree, is 

(B,)’ = 1 <BI”>’> (48) 
m 

and is plotted in Fig. 3, where we have renormalized the 
magnetic field so that the dipole at the core surface is unity, 
IIBsD 11 = 1. Since our dynamo models are numerically conver- 
gent, the magnetic energy decreases with increasing harmonic 
degree for all three models, the reddest spectrum being that of 

Table 3. Comparison of magnetic Reynolds numbers for different levels of truncation ( M ,  N )  with 
unit normalization of the velocity field, (u) = 1. That the differences in R, for the higher 
truncation levels are slight is indicative of numerically convergent solutions. 

(100,7) (100,8) (100,9) (150,lO) (150, 11) (150,12) (200,13) (200,14) 

KR 918.34 912.14 912.15 897.56 897.72 897.57 892.71 892.69 
LG1 1459.78 1435.75 1440.73 1402.37 1402.44 1402.31 1390.30 1389.91 
LG2 143.51 144.26 144.13 143.50 143.65 143.66 143.47 143.44 
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Figure 3. Magnetic energy spectrum, (Bl)’, for the original Kumar 
& Roberts (1975) dynamo model and the two optimized dynamos 
derived in this study. That the energies decrease with increasing 
harmonic degree is indicative of numerically convergent solutions. The 
sawtooth pattern is caused by the symmetry imposed on the solution. 
Large, axisymmetric toroidal harmonics have even degree and tend to 
dominate the spectrum for models KR and LG1. 

LG1, the bluest that of LG2, a result consistent with the 
differences in (V’B). The differences in the spectra are manifest 
in plots of the magnetic fields. In Fig. 4(a) we show the 
#-average of the poloidal field in meridional cross-section; all 
three models show little difference. The non-axisymmetric form 

KR 

and greater spatial complexity, i.e. the blueness, of LG2 is 
apparent in Fig. 4( b), where we plot contours of BB in equa- 
torial section. A similar observation can be made of B,; in 
Fig. 5(a) we see little difference in the #-averaged toroidal field, 
but the greater spatial complexity of LG2 is apparent in the 
unaveraged meridional sections, Figs 5(b) and 5(c). 

The relatively slight overall differences between LG1 and 
KR reveal that Kumar & Roberts found a dynamo which very 
nearly minimizes the spatial roughness, (V’B), of the magnetic 
field. Indeed, LG1 is only slightly smoother than KR, but the 
important difference, of course, is that our dynamo models 
were constructed systematically, whilst KR was found with 
great effort after much trial and error. The utility of our 
optimization technique is illustrated further by the fact that 
we have been able to construct a dynamo, LG2, which has 
both a satisfactory degree of convergence and a geophysically 
plausible magnetic Reynolds number, O( 100). 

Interestingly enough, despite significant differences in R,, 
the poloidal fields sustained at the surface of the core, r = 1, 
are qualitatively similar; see Fig. 6. The slight differences in 
the surface fields are caused by different proportions of meri- 
dional circulation and differential rotation. Of the three models, 
LG2 has the strongest gradients in flux at low latitudes, a 
result of larger meridional circulation, as measured by E ~ ,  

which sweeps flux towards the equator, and weaker differential 
rotation, as measured by E,,, which shears out poloidal flux at 
low latitudes. 

4.2 Geophysical comparisons 

Although we do not claim that our dynamo models reproduce 
the details of the geodynamo-indeed, our analysis is only 
kinematic-none the less it is useful to make a few geophysical 

LGI L G2 

Figure 4. Poloidal magnetic fields for the three dynamo models with the field strength normalized so that the surface dipole is unity, IJB,, 11 = 1. 
The contour intervals are all equal. (a) Azimuthal average of the poloidal field in a meridian plane. (b) B, in an equatorial section. Note the greater 
complexity of model LG2, which is not apparent in azimuthal average. 
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LG2 

Figure 5.  Toroidal magnetic fields for the three dynamo models with the field strength normalized so that the surface dipole is unity, IIBsDIj = 1. 
The contour intervals for KR and LG1 are equal and ten times larger than that for LG2. (a) Azimuthal average of the toroidal field in a meridian 
plane; (b) toroidal field in the meridian plane 4 = 0; (c) toroidal field in the meridian plane 4 = 90". 

comparisons. If, for each model, we match the strength of the 
surface, r = 1, dipole with that at the core surface, -0.3 mT, 
we obtain the corresponding average strengths of the magnetic 
fields in the model interiors; see Table 2. A very rough upper 
bound on the magnetic field strength for the core can be 
obtained assuming that the dynamics are governed by a 
balance between the Coriolis and Lorentz forces (Hide & 
Roberts 1979). Such a magnetostrophic balance occurs for a 
magnetic field strength of - 10 mT, a limit which is consistent 
with thermodynamic arguments (Gubbins, Masters & Jacobs 
1979). Both KR and LG1 have average magnetic field strengths 
that might be considered somewhat excessive; on the other 
hand, LG2 certainly has a field strength acceptably below the 
magnetostrophic limit. 

Another useful comparison is one of the ohmic dissipation, 
Q, of the dynamo models, Table2. Of the observed surface 
heat flow, 4 x 1013 W (Sclater, Jaupart & Galson 1980), about 
three-quarters comes from radioactivity in the mantle (Stacey 
1977); the remainder comes from a wide variety of sources, 
including radioactivity in the core, remnant heat of accretion, 
tidal dissipation, latent heat release, and ohmic dissipation in 
the core (Gubbins et al. 1979). Although a precise limit on the 

amount of ohmic dissipation that contributes to the surface 
heat flow is not available, the ohmic dissipations of KR and 
LG1, calculated assuming a core conductivity of 3 x lo5 S m-', 
are probably excessive, but the dissipation of LG2 is acceptable. 

5 EFFICIENCY AND CONVERGENCE 

Dynamo LG2 has a smaller magnetic Reynolds number than 
either KR or LG1, and in that sense is the most efficient of 
our three dynamo models. Some insight into the cause of this 
difference in efficiency may be gained by inspecting the spatial 
distribution of helicity. Since the helicity for (24) is EA, a 
property qualitatively consistent with rotating convection 
(Moffatt 1978), following Nakajima & Kono (1991) we calcu- 
lated the helicity averaged over the Northern Hemisphere, 

lhlN = 2v-1 s,̂ " hr2 dr sin 6 do d4, (49) 

for each of the dynamo models. From Table 2 we notice that 
lhlN is greatest for LG2. Nakajima & Kono have suggested 
that velocites with larger IhJN support dynamo action with 
smaller R,, and our results are consistent with their hypothesis. 
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Figure 6. Surface magnetic fields for the three dynamo models with 
the field strength normalized so that the surface dipole is unity, 
IIB,,II = 1. The contour intervals are all equal. 

We suggest, however, that it is also possible that the spatial 
distribution of helicity plays a role is dynamo efficiency. In 
Fig. 7 we show plots of the spatial distribution of helicity. 
Although the #-averaged helicity is not much different for each 
of the three models, other than in magnitude, the unaveraged 
plots show that the helicity of LG2 has a much simpler spatial 
distribution. In fact, for, say, the Northern Hemisphere, the 
velocity field of LG2 has a helicity which is predominantly of 
one sign, whilst both KR and LG1 have large regions where 
the helicity is of opposite sign. The simple helicity distribution 
of LG2 could .have a role in making it an efficient dynamo, as 
an a-effect could be sustained easily by a simple distribution 
of helicity. On the other hand, for KR and LG1 the magnetic 
field is twisted in one region of helicity, but untwisted in the 
neighbouring region of opposite helicity, a complication which 
can only act to reduce the efficiency of the cc-effect, thereby 
requiring larger magnetic Reynolds numbers. 

Because of the formulation of our optimization procedure, 
there is a trade-off between the spatial complexity of the 
magnetic field, (V’B), and the magnetic Reynolds number, 

R,. Among the three dynamo models considered here, the 
dynamo with a redder spectrum has a larger R, than the 
dynamo with a bluer spectrum. At first glance such a trade- 
off might appear to be counter-intuitive. Because advection 
tends to twist and tangle the magnetic field, whilst diffusion only 
acts to simplify its spatial form, it might be thought that a 
fluid motion which sustains spatially simple magnetic fields 
would possess a small R,, and a fluid motion which sustains 
spatially complex magnetic fields would have a large R,. 
However, this expectation is not borne out by the examples 
presented here. 

An explanation for this may be due, in part, to differential 
rotation. In its simplest form, CIW dynamo theory presumes 
that differential rotation acts on the poloidal dipole giving rise 
to the toroidal quadrupole. This same differential rotation, 
however, can act to assist diffusion in destroying higher-degree 
spatially complex components of the magnetic field, particu- 
larly the non-axisymmetric components. In Fig. 8 we show, 
schematically, differential rotation, ty , acting on a simple loop 
of magnetic field. As we have drawn it, this could represent a 
non-axisymmetric poloidal magnetic field with an initial 
characteristic dimension D and diffusive time-scale zg = D’/q; 
after advective shearing, the magnetic loop is stretched and 
twisted so that its characteristic dimension is decreased to 6, 
where 6 << D, and with diffusive time-scale za = 6’/q. Since 
zg << zD, the magnetic field is destroyed more efficiently than if 
no differential rotation had existed. Obviously, for dynamo 
action, the poloidal field is constantly being regenerated via 
the a-effect, but if differential rotation is strong compared with 
the poloidal motion, as it is for our dynamos with large Rh, 
then the diffusive decay of the non-axisymmetric, high degree, 
i.e. spatially complex, components of the magnetic field is 
enhanced. This is a recipe for inefficiency, since by Cowling’s 
theorem some non-axisymmetric components of the magnetic 
field must exist, and the only way of maintaining dynamo 
action, despite rotational enhancement of diffusion, is with 
larger magnetic Reynolds numbers. 

6 DISCUSSION 

Our optimization approach represents a systematic means of 
constructing dynamo models that are both mathematically 
tractable and physically reasonable. Although, for the purposes 
of illustration, we limited ourselves to a severely restricted 
class of fluid motions, there is nothing to prevent an extension 
of this technique to consider a much wider class of fluid 
motions, represented, say, by radial grid points and a high- 
degree spherical harmonic expansion. Such a treatment could 
yield kinematic models with convergence properties superior 
to those found here. The kinematic optimization method could 
be used to find those dynamos that minimize physically 
interesting quantities; for example, finding the dynamo with 
minimum magnetic Reynolds number or the dynamo with 
minimum ohmic dissipation. Such investigations would estab- 
lish lower bounds on some interesting physical quantities 
relating to all dynamos, including, but not being limited to, 
the geodynamo. 

An analogous and geophysically important inverse problem 
would involve finding the velocity fields that sustain core 
surface fields that are constrained to resemble the Earth’s and 
that minimize some geophysically important quantity of the 
core: for example, optimizing for the kinematic dynamo, which 
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LG2 

Figure 7. Helicity, u-V x u, for the three dynamo models with unit normalization of the velocity field, (u) = 1. The contour intervals for KR and 
LG1 are equal and a tenth that for LG2. (a) Azimuthal average of the helicity in a meridian plane; (b) helicity in the meridian plane 4 = 0; 
(c) helicity in the meridian plane 4 = 90". 

minimizes a weighted combination of misfit to the observed 
field and average internal field strength. Of course, we do not 
contend that the geodynamo operates in a regime that mini- 
mizes its average field strength, but by tying such an inversion 
directly to the observed magnetic field, or a suitable approxi- 
mation of it, one could place a lower bound on the internal 
field strength, a quantity of obvious importance for understand- 
ing the dynamic effects of the Lorentz force. Alternatively, 
one could minimize a combination of misfit to the observed 
field and ohmic dissipation in the core, thereby placing a 
lower bound on the ohmic dissipation, a quantity which is 
currently poorly constrained but of central importance to core 
thermodynamics. 

In principle, our optimization technique could also be 
extended to a dynamic analysis. Like the forward kinematic 
dynamo problem, the forward dynamic dynamo problem 
suffers from a degree of arbitrariness, although of a different 
type. For a forward dynamic analysis, instead of specifying the 
fluid motion, as one does for the kinematic case, one needs to 
specify the physical parameters of the fluid, the viscosity and 
thermal diffusivity for example, and, of course, the boundary 

and initial conditions. Once this is done, the forward dynamic 
problem, like the forward kinematic problem, consists of a 
numerical experiment: do the specified physical properties 
allow the fluid to convect in such a way that dynamo action 
is sustained? This programme has been tried by a number of 
investigators (Gubbins 1975; Gilman 1983; Glatzmaier 1985; 
Zhang & Busse 1989; Glatzmaier & Roberts 1995), but the 
interpretable results are few in relation to the enormous effort 
expended. 

In treating the dynamic dynamo as an optimization problem, 
one might solve for the extrinsic parameters, the Taylor, 
Chandrasekhar, Prandtl and Rayleigh numbers, by, for 
example, finding the set which optimizes numerical conver- 
gence. Alternatively, one could allow for lateral variation of 
temperature or heat flux on the coremantle boundary, as 
done by Zhang & Gubbins (1993) for the forward, non- 
magnetic problem, and invert the observed magnetic field for 
the temperature or heat flux on the core surface. Clearly, an 
optimization approach to dynamo theory presents many poss- 
ible inversions which could improve our understanding of the 
inner workings of the Earth's core and the geodynamo. 
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Figure 8. The effect of differential rotation on a non-axisymmetric, 
poloidal field line. 
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