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[1] The multivariate statistical basis that underlies both single- and multi-input linear
prediction filter analyses is reviewed, providing context necessary to understand the full
capabilities and limitations of such models. A brief reanalysis of single-input filters is
conducted primarily as a contrast to subsequent analysis of multi-input linear filters, which
(1) guarantee similar or better prediction capabilities than single-input linear filters and
(2) reduce bias in estimated filter coefficients that is inherent to underspecified linear
models when ordinary least squares algorithms are employed. The former is clearly
valuable from a practical standpoint, but the latter helps build confidence in any physical
interpretations of both the filter coefficients, which often emulate stable low-order
dynamical response functions quite well, as well as prediction error statistics that can be
used to provide a lower bound on the fractional or percent variance of radiation belt
electron flux that can be attributed to each different solar wind input. We find that the solar
wind bulk speed tends to be the primary driver of electron flux enhancements at magnetic
L shells larger than 4, with little or no relation to flux decreases. Changes in the solar
wind’s magnetic field strength tend to temporarily reduce electron fluxes between L = 4
and L = 8, while enhancing it between L = 3 and L = 4. In contrast to predictions generated
by single-input linear filters, multi-input filters show that solar wind plasma density
only contributes weakly to electron flux variability, although it does so consistently across
nearly all L shells. Finally, we studied two distinct 4-year intervals within the most recent
solar cycle and found that smaller, more time-stationary prediction errors are generated
by multi-input linear filters. We therefore conclude that multi-input filters more accurately

reflect real dynamic relationships than any single-input linear filter alone.
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1. Introduction

[2] The Earth’s magnetosphere is a highly dynamic
physical system that derives its energy predominately from
the impinging solar wind [Arnoldy, 1971; Perreault and
Akasofu, 1978; Akasofu, 1979; Vasyliunas et al., 1982].
Strong correlations between various solar wind measure-
ments and magnetospheric parameters have led to the broad
application of so-called linear prediction filters as proxies
for the true nonlinear coupling between these two distinct
space plasma regimes [lyemori et al., 1979; Bargatze et al.,
1985; Clauer, 1986; Nagai, 1988]. Electron flux variations
in the radiation belts in particular have long been known to
exhibit a strong correlation with solar wind speed [Paulikas
and Blake, 1979; Baker et al., 1986]. The National Oceanic
& Atmospheric Administration’s operational Relativistic
Electron Forecast Model, following a technique first sug-
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gested by Baker et al. [1990], uses real time measurements
of solar wind speed taken from the Advanced Composition
Explorer spacecraft as input for a linear prediction filter that
forecasts the daily influence of >2 MeV electrons at GOES
orbital (i.e., geostationary) altitudes to help understand, if
not mitigate, the effects of charge accumulation deep in
otherwise insulated materials (deep dielectric charging).

[3] More recently, this approach has been extended to a
broader range of geomagnetic L shells by using electron
flux data from the Solar, Anomalous, and Magnetospheric
Particle Explorer (SAMPEX) Proton-Electron Telescope
(PET) instrument to generate multi-output linear prediction
filters for nearly the entire radiation belt [Vassiliadis et al.,
2002, 2005; Rigler et al., 2004, 2005]. Efforts are under
way to implement these models in an operational setting
[Baker et al., 2004a; Vassiliadis et al., 2004, 2005], but
these studies have already led to an improved physical
understanding of the coupling between the solar wind and
radiation belt electron fluxes. Specifically, three distinct
categories of solar wind-magnetosphere coupling have been
proposed, each based on distinctive L-shell profiles of
observation-prediction correlations. The first category includes
variables related most closely to the fluid-like aspects of
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magnetohydrodynamics (MHD) like pressure and viscous
interactions at the outer magnetospheric boundary. The second
category corresponds to the electromagnetic aspects of MHD,
in particular, enhanced convection driven by dayside magnetic
reconnection. A third category includes variables that do not
exhibit very direct dynamic coupling with the radiation belts
but rather appear to modulate electron loss rates via enhanced
thermospheric and ionospheric densities. The present paper is
strongly motivated by these findings.

[4] Despite their heavy use throughout the 1980s, and
more limited application to both scientific analysis and
space weather forecasting recently, a thorough description
of the mathematical theory and techniques that underlie
nearly all linear prediction filter models has not been given
in the magnetospheric physics literature. Indeed, it is
difficult to find a concise summary of all such information
in a single source even outside this field. This is in part due
to the fact that, quickly following some of the earliest work
by Wiener [1949], the immense utility of linear filters was
recognized across a broad spectrum of technical and scien-
tific disciplines, each of which then proceeded to evolve
more or less independently up to the present day. Geo-
physicists in general, and magnetospheric physicists specif-
ically, were perhaps a little late to exploit these powerful
modeling techniques, but after catching on, they tended to
follow in the foot steps of controls and process engineers
who were more interested in the potential of linear filters to
describe various dynamical systems.

[5] Other less “technical” disciplines have also benefited
from the early work of Wiener. Medicine, social and
behavioral sciences, political science, and especially econo-
metrics are examples of fields that are concerned with
understanding relationships between large numbers of var-
iables [Pindyck and Rubinfeld, 1991], often time series,
whose variations are not typically constrained by any
known fundamental rules of nature. As such, they make
careful and deliberate use of classical multivariate statistics
and linear regression techniques to extract as much useful
information as possible from the available data and make
the best predictions possible in the absence of well-defined
governing dynamics. Equally important, a high premium is
assigned to a thorough understanding of the uncertainties
inherent in data-derived models, as well as the design of
model structures and data collection techniques, so as to
help mitigate these potential errors. Although such techni-
ques have evolved to the point that they are considered
classical within these fields, they are far from common-
place, or even considered “‘best practice,” within the
magnetospheric research community. With large and ever-
growing collections of space physics data, it is past time to
remedy this situation.

[6] A true dynamical system requires a feedback mech-
anism that describes how the system’s state evolves over
time. A common approach in time series forecasting is to
make the future state of the system a linear function of the
current and prior states. A perturbation term may be
included to allow external inputs to drive the system away
from equilibrium, but the fundamental dynamics of any
linear filter-based model are captured primarily by its
autoregressive (AR) coefficients. The single coefficient
present in a first-order AR model reproduces exponential
decay, the two coefficients in a second-order model can
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generate damped harmonic oscillations, and so forth. Sev-
eral magnetospheric studies during the 1990s employed this
kind of discretized dynamical model, even extending it with
local-linear variants [Vassiliadis et al., 1995] and nonlinear
continuous-time analogs [Klimas et al., 1997].

[7] To date, however, most attempts to describe empiri-
cally the magnetosphere’s dynamic response to various
drivers have relied on so-called finite impulse response
(FIR) filters, which do not posses an AR component, and
therefore no explicit feedback mechanism capable of prop-
agating the state forward in time. The proper interpretation
of any such FIR filter model is that it describes a completely
nondynamical system that only evolves because of external
influences. Relatively low-order and highly stable dynam-
ical systems may however exhibit a response function that
can be approximated by a FIR filter’s time-lagged coeffi-
cients. The radiation belts in particular exhibit roughly first-
order dynamics at daily timescales. The filters used in both
scientific studies and operational forecasting of radiation
belt electrons capture this dynamical behavior but also
exhibit more complex structure that cannot be attributed
solely to statistical uncertainties inherent to the data used to
train the models (see section 4).

[8] We must note that the idea to use multiple inputs with
linear filters is not completely new in magnetospheric
physics research [e.g., McPherron et al., 1986; Trattner
and Rucker, 1990], but it has yet to be applied to radiation
belt studies, nor has it been attempted in the statistically
rigorous manner we intend here. We posit that an empirical
radiation belt modeling approach that employs the proven
method of multi-input linear prediction filters, but presents
the theory, process, and results in a manner that relies less
on an understanding of dynamical systems theory, and more
on understanding the multivariate statistics common in
fields like econometrics, will lead both to a better under-
standing of the associated radiation belt dynamics and
eventually to better forecasts. We do not proceed blindly,
however, and constrain our choice of filter inputs to three
well-studied solar wind parameters, the magnitude of the
interplanetary magnetic field (B;,,), the solar wind bulk
speed (Vy,,), and the solar wind plasma density (p,,). The
first two inputs correspond to the two MHD-related cate-
gories of solar wind-magnetosphere coupling proposed in
the work of Vassiliadis et al. [2005]. More specifically,
these two scalar quantities exhibit stronger correlations with
SAMPEX-observed electron fluxes than do their respective
vector components when daily averages are employed. The
third input (ps,) is included to help contrast single- and
multi-input linear filters, both in terms of their predictive
capabilities and their ability to shed light on the underlying
dynamics of the radiation belts.

2. Multivariate Linear Regression

[¢9] This section will provide the mathematical back-
ground necessary to make what we consider to be a more
appropriate interpretation of the single- and multi-input
linear filters presented in subsequent sections than the
dynamical system approach described previously. Specifi-
cally, the ensemble of filter coefficients should be seen as a
kind of input-normalized superposed epoch analysis [e.g.,
O’Brien et al., 2001]; one where the epoch is defined as
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each discrete step in the training data time series rather than
by an ad hoc criterion imposed by the analyst. We may
occasionally draw on the more detailed information pre-
sented in Appendix A, B, and C which are provided for those
readers interested in a more thorough and pedagogical
treatment of certain aspects of modern multivariate statistics.

[10] Let us begin with the simplest linear relationship
possible between a dependent variable (Y) and an independent
variable (X). These variables are usually realized as column
vectors whose elements correspond to individual observations.
While it is common to consider Y and X to be drawn from a
given population at regular discrete times, the assumption that
they are time series is not necessary to the validity of the more
general statistical relationships being discussed. A time pa-
rameter “¢” will therefore be dropped from this point forward
unless and until it is required for clarity.

Y=a+bX +¢ (1)

[11] Equation (1) is just a line in the XY plane with a slope
b and a Y intercept a. ¢ is included for generality and
describes the prediction residuals of this model. This
relationship implies that ¥ and X vary synchronously and
that the ratio of each change in Y to each change in X
corresponds to the slope b. What’s more, if Y and X are
standardized (that is, each variable is divided by its standard
deviation, creating unit-variance distributions), the slope that
optimizes equation (1) in a least squares sense (which we will
now call »") can be squared to provide a metric that represents
the fraction of ¥’s variance that can be attributed to X.

[12] The linear relationship between two variables can be
extended easily to include a set of multiple independent
variables:

Y=a+bXi +bXo + -+ bgXg + ¢ (2)

Slopes b, associated with the additional independent
variables X;—;_x now describe the projection of a
regression line onto corresponding planes in a K-dimen-
sional space. If Y is defined as the linear prediction in the
absence of errors, equation (2) may be rewritten as Y=Y +
e. If all the variables are standardized to unit variance
distributions, the square of the optimal coefficient for
regressing ¥’ on Y’ must fall between zero and unity and,
like before, describes the fraction of ¥’s variance that can be
attributed to a linear combination of all the different
independent variables. This metric is commonly referred to
as the “coefficient of multiple determination,” even when
applied to a linear equation using only a single independent
variable. However, after defining a set H = Xj—;_ g, we will
follow the example of the vast majority of statisticians and
write R, for brevity.

[13] Interpreting individual regression coefficients is not
as straightforward. Each coefficient b, represents the ratio of
a change in Y to a change in X, when every other
independent variable is held constant. Similarly, if all
variables, Y and X, are standardized to produce unit-
variance distributions, the square of each least squares
optimized coefficient, b;’, represents X;’s fractional contri-
bution to Y’s variance when every other independent vari-
able is held constant. If X is uncorrelated with every other
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independent variable, it is a simple matter to vary this
independent variable without altering the others, so b,
represents X)’s total contribution to the variance in Y. If all
the independent variables are uncorrelated with one another,
Ry, is simply equal to the summation of the squares of the
standardized slopes.

[14] However, when X is correlated with any or all of the
other independent variables, as is generally the case, such a
simple summation will not equal Ry;;and can in fact be either
larger or smaller, depending on the signs of correlations
between different independent variables. One must account
for these correlations when trying to explain some fraction of
Y’s variance. A general relationship that relates the coeffi-
cient of determination, the standardized slopes from a mul-
tivariate linear regression, and the correlations between
multiple independent variables is given in equation (3):

K

R =3 D biblry (3)

i=1j=1

Appendix A provides the derivation for these expressions,
as well as for the alternative and simpler expression given in
equation (4).

K
Ry =Y b (4)
k=1

[15] As it happens, there is nothing to prevent the sub-
scripts £ = 1— K from being modified to represent a
discrete time shift in the independent variable X. This leads
to the familiar convolution equation typically used to
implement linear prediction filters in the time domain.

f/(t) =a+ byinX (¢ — min) + byin X (¢ —min — 1) + -+ +
bimax—1 X (t — max + 1) 4 by X (£ — max)

or (5)
F)=a+ S bX(t—k)

k=min

In equation (5), “min” refers to the minimum time lag
relative to the desired prediction time, “max’ refers to the
maximum time lag, and the indices are assumed to increase
incrementally from the former to the latter. Note that here
the parameter ¢ has been reinserted for clarity, since in this
instance, time is an explicit component of the model
equation in the form of a relative time lag. One may also
notice that there is nothing to prevent additional subscripts
representing multiple inputs from being introduced, since
equations (2) or (5) are purely additive.

max max

}A/(l‘) = a+ Z blle([—k) + Z bszz(l‘—k)
k =min k =min
+o > buXi(t—k) (6)
k =min

Each subscript i in equation (6) corresponds to that
component of the prediction Y which is generated when
only the input X; is allowed to vary. Therefore if each

30of 17



A06208

component prediction Y, is recast as its own independent
variable and standardized, the optimal b{?s will represent
Y’s contribution to Y’s total variance when every other
component prediction is held constant. With no clear
alternatives established in any of the statistics literature
reviewed for this paper, we will refer to these coefficients
describing the regression of the standardized prediction on
the standardized observations as (component) prediction
regression coefficients (PRCs). There is no guarantee that
component predictions will be uncorrelated, even if their
respective inputs are, so the squares of PRCs are not
expected to add up to exactly R};,. Therefore equations (3)
and (4) will be required once again to account for cross
correlations between the component predictions.

[16] Up to this point, no technique for calculating optimal
slopes/regression coefficients has been discussed. Ordinary
least squares (OLS) is by far the most common procedure used
to determine optimal parameters that minimize the residuals of
a linear model, both because it is a numerically efficient
algorithm and because it guarantees a globally optimal solu-
tion due to the quadratic nature of the cost function being
minimized, namely the sum of the squared prediction errors
Ye?. A matrix-oriented version of the technique is summarized
in Appendix B, which can be modified easily to determine
single or multi-input linear filter coefficients by time shifting
the relevant inputs and making them serve as independent
variables in a multivariate regression.

[17] Even though OLS is guaranteed to minimize predic-
tion residuals in an averaged sense for a given set of training
data, there is no guarantee that the estimated parameters are
optimal for all possible data. This becomes most apparent
when the magnitude of the error term ¢ is comparable to the
predictions themselves. However, if certain assumptions
about ¢ are met, namely that it is a zero-mean, normally
distributed random sequence, it becomes possible to place
bounds on the optimal parameters based solely on the
results obtained from a single-sample OLS estimation.
The standard error associated with a given OLS-estimated
parameter is described in Appendix C and provides a
confidence interval for the estimate that may be used to
determine whether or not it is statistically significant.

[18] It is important to note that the uncertainty associated
with these confidence intervals is not just a function of the
number of observations in a given sample (N) and the
variance of the prediction error (1 — RiH) alone, as is the
case for all single-input linear regressions, but they are
scaled up by cross correlations that may exist between
multiple independent variables. This phenomenon, called
multicollinearity, is described in more detail in Appendix C,
but it makes intuitive sense if one considers the extreme case
when a perfect correlation exists between any two indepen-
dent variables. In such a situation, it becomes impossible to
ascertain which of two cross-correlated independent varia-
bles caused a particular change in the independent variable,
the standard error becomes infinite, and there is zero statis-
tical significance to the estimated parameter.

[19] One question that has never been adequately
addressed in any magnetospheric statistical studies is what
happens when prediction residuals are not composed of white
Gaussian noise. This is potentially the most relevant consid-
eration when it comes to attempts to interpret linear filter
coefficients in any physical context. Appendix C explains
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how autocorrelated structure in a model’s prediction residuals
will tend to artificially inflate the statistical significance of a
parameter estimate. Circumstances that lead to biased param-
eter estimates, regardless of the number of observations
available in a given sample, are also covered. Specifically,
if the investigator fails to include a relevant independent
variable in the OLS regression matrix, and that missing
variable is partly correlated with one or more included
independent variables, the estimated parameters will be
biased, thus leading to erroneous physical interpretations.
This is in contrast to the situation that arises when an
irrelevant variable is mistakenly included in the regression
matrix, which simply results in an expected parameter value
equal to 0. Multi-input linear filters are one way to reduce the
inherent bias associated with OLS parameter estimation, as
we see in subsequent sections of the present paper.

3. Data Sources and Preparation

[20] If it is to be independently verified, the empirical
nature of this study warrants a thorough description of the
data sources and, more importantly, an explanation of the
steps taken to preprocess the data used in our linear filter
analyses. The solar wind data were obtained from the GSFC/
SPDF OMNIWeb interface on the World Wide Web at http://
omniweb.gsfc.nasa.gov/ [King and Papitashvili, 2005]. This
is an hourly averaged collection of over 40 types of solar
wind plasma and magnetic field data. These observations
were collected from a variety of satellites and ground-based
instruments, cross normalized, and when appropriate, time-
shifted for use in magnetospheric studies at 1 AU. This study
is limited to three OMNI parameters, the magnitude of the
interplanetary magnetic field (B;,,), the solar wind’s bulk
speed (V,,), and solar wind plasma density (ps,,).

[21] The SAMPEX [Baker et al., 1993] PET [Cook et al.,
1993] detects electrons with energies between 2 and 6 MeV.
It does so from low altitudes (<600 km) but passes through
a broad range of geomagnetic L shells because of its nearly
polar orbit. Even though the populations sampled at these
low altitudes are dominated by particles with large equa-
torial pitch angles, it has been shown that SAMPEX-
measured fluxes track measurements made at geostationary
and other altitudes along the same magnetic flux tube quite
closely on timescales less than a day [Kanekal et al., 2001].
This predominately global coherence allows SAMPEX
observations to serve as a proxy for radiation belt electron
fluxes throughout the inner magnetosphere.

[22] As provided, the OMNI solar wind parameters
exhibit very different absolute magnitudes. These differ-
ences are worse when the parameters are transformed into
SI units. In order to compare directly the prediction filter
coefficients associated with each input parameter, these data
are normalized by dividing each by their respective standard
deviations. It is also common practice to remove the mean
of each input parameter from the observation time series,
however, we chose to construct the regression matrix in a
manner that allows the estimation of an optimal intercept
coefficient with the OLS algorithm, rather than forcing it to
equal 0 by removing the mean(s) from the training data [see
equation (B3) in Appendix B].

[23] The distribution of SAMPEX electron flux data is
highly skewed and has a log normal distribution, so a log;g
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transform was applied to make it more symmetric. This is not
absolutely necessary for OLS parameter estimation, but it
does help to reduce bias error that arises from the fact that we
are attempting to reproduce the dynamics of a nonlinear
system with linear models. As a result, any estimated filters
will tend to make predictions that are most consistent with
average radiation belt conditions, while outliers in the train-
ing data will have relatively little effect on the final values of
the filter coefficients. Unlike the OMNI data, we did not
standardize electron flux data, which means a unit-valued
filter coefficient represents an order of magnitude increase in
electron flux resulting from a single standard deviation
increase in the respective time-lagged solar wind input.

[24] Finally, all data used in this study were initially
provided at a subdaily resolution and subsequently reorgan-
ized into daily averaged bins that begin and end at noon
Universal Time (UT). Subsequently, all time stamps pre-
sented in this paper are assumed to fall in the middle of this
sample period, or midnight UT. The entire data set used to
train and validate the models in this study is presented in
Figure 1.

4. Single-Input Radiation Belt Linear Predictions
(Revisited)

[25] As noted in section 1, a primary motivation for our
particular choice of solar wind parameters is that they
represent at least two of the three fundamental coupling
mechanisms between the solar wind and the Earth’s electron
radiation belt that were addressed in detail by Vassiliadis et
al. [2005]. We begin our own analysis by taking a closer
look at the single-input response of SAMPEX electrons to
each of the solar wind inputs described above in order to
point out one or two aspects of these response functions that
were not covered previously.

[26] Figure 2 contains representative single-input linear
filter coefficients derived from SAMPEX observations and
the solar wind parameters described previously. Each coef-
ficient is plotted as a function of the number of days since a
hypothetical day-long “impulse” in its corresponding input
equal to 1 standard deviation of that input (see section 3).
One-sigma error bars are also included. Because of a large
number of observations (nearly 3000) that comprised this
training sample, the error bars are small relative to the
absolute value of most coefficients. While this is not strictly
a formal indication of statistical significance, it is informa-
tion that could be used to construct confidence intervals and
conduct formal hypothesis tests using standard F-score
tables if we were concerned primarily with the individual
filter coefficients. We are not. It is worth noting, however,
that the Vj, coefficients’ standard errors are larger than
those for the other filters, a phenomenon which arises from
the high degree of autocorrelation found in the this partic-
ular input time series. Even after correcting for this multi-
collinearity, the standard error bars remain small relative to
the dominant response, and most coefficient estimates
would still be statistically significant if our assumptions
about ¢ are valid. We shall see later that this is not
necessarily the case.

[27] Assuming for the moment that the coefficients are
significant, it should also be noted that those corresponding
to negative time lags are for the most part near 0. This implies
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that changes in flux do not precede changes in a particular
solar wind input, validating our initial assumptions about
causality. The small deviations from 0 seen just prior to the
input impulse may be indicative of some sort of precondi-
tioning of the radiation belts, although it is impossible to
determine from the results here whether this is due to internal
dynamics or the existence of an additional input that was not
considered when training the model parameters with OLS.

[28] The gross features of the response to B;,,rand Vj,, are
similar. A drop in flux occurs just after an input impulse at a
zero-day time lag, followed by a rapid flux increase, and
ending with a relatively slow decay to the background state.
At first glance, the response to py, seems to have more in
common with the response to B, except that it has no
positive deflection at later time lags. However, when the
large negative correlation (<—0.75) between V,, and py,, is
taken into account, a phenomenon that is due to the pressure
balance required in incompressible fluid flows, it is reason-
able to imagine that the coefficients might be flipped about
the abscissa, giving a response that is actually more similar
to that for bulk speed.

[20] Similarities in all responses can be seen to extend
across a wide range of L shells in the profiles shown in the
left-hand column of Figure 3, along with additional com-
mon features. After one considers the strong anticorrelation
between bulk speed and density, there is a significant flux
enhancement seen in all three single-input responses that
occurs between L ~ 3 and L ~ 4. Also, there appears to be a
general tendency for flux levels to be slightly depressed just
prior to the input impulses between L ~ 4 and L ~ 8§,
possibly indicating some kind of preconditioning of the
radiation belt prior to significant flux enhancements. The
latter was identified by Vassiliadis et al. [2005] and
described as a “precursor” response caused by earlier
interplanetary disturbances that are not causally connected
to the single input being studied. Such commonality is
mostly a consequence of the fact that the same output data
were used to train separately each of the single-input filters.
These are observations of a radiation belt state that is highly
persistent in time when it is not perturbed by changes in the
solar wind drivers. Since FIR filters do not include internal
dynamics that might account for this persistence, OLS
compensates by changing the magnitude of time-lagged
filter coefficients to mimic an extended internal response
to external stimuli.

[30] There remain notable differences in the response
profiles. First, the IMF magnitude responses appear more
distributed in time than those for plasma bulk speed and
density; the contours of the former almost appear to be a
stretched and smoothed version of the latter. This is expected
and partly related to the similarities just noted. OLS’s
compensation for a lack of internal dynamics in the FIR
model structure requires that the typically impulsive nature of
changes in the IMF magnitude be smoothed over time to
reproduce the relatively long timescales associated with the
decay of electron flux in the radiation belts. Since V5, and
the anticorrelated portion of py,, vary on timescales similar
to the electron fluxes, the responses appear more impulsive.
In other words, the area under the curve produced by
convolving a filter with its respective input must roughly
match the area generated by convolutions of other filters
and inputs designed to predict the same output time series.
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Eight years of normalized solar wind inputs taken from NASA’s OMNI database are shown in

the top panel. The log;, of 2—6 MeV electron fluxes measured by the SAMPEX PET instrument is shown
in the bottom panel as a function of L shell in units of Earth radii (Rg).

[31] Also, the minimum observed in the response to Vi,
occurs about 1 day sooner than the minimum seen in the
By response. This is explained by known temporal rela-
tionships between these two solar wind parameters. In
particular, empirical [Hruska and Hruska, 1989] and theo-
retical [Pizzo, 1983] studies show that strong enhancements
in IMF magnitude tend to precede significant increases in
solar wind speed near corotating interaction regions (CIRs)
by a day or so. The same Pizzo study, as well as empirical
studies as far back as the study of Gosling et al. [1972], also
showed that sharp increases in density occur at the leading
edge of CIRs. However, at a 1-day time resolution, the
prolonged density depression that occurs as one enters
the rarefaction behind the CIR statistically overwhelms the
shock-like enhancement leading the CIR, resulting in a FIR
profile that nearly mirrors that for bulk speed. Finally, the
minimum of this depression tends to occur 1-2 days after
the peak in bulk speed, explaining the earlier antipeak seen
in the density response profile.

[32] While response function profiles certainly provide a
useful visual tool, more robust error statistics are required if
any confidence is to be assigned to a particular interpreta-
tion of the filter coefficients. Standard error bars help in this
regard, but it can be difficult to interpret their meaning when
a large number of coefficients are associated with a single
prediction. Also, standard error bars fail to take into account
the effects of correlated prediction errors (see Appendix C).
It can be illuminating to examine net prediction error
statistics for a particular filter since doing so actually
measures the dynamic capabilities of the model in question.

[33] The single-input prediction regression coefficient
(PRC, see section 2) profiles shown in the right-hand
column of Figure 3 are comparable to the correlation
coefficient profiles used by Vassiliadis et al. [2002, 2004,
2005], except that they have been constructed using slightly
different data sets. They indicate the square root of the
fractional variance in the output captured by a model driven
by a single solar wind input. In addition to calculating PRCs
for the entire 1994—-2001 sample, we determined PRCs for
two subsets of this interval. The first includes observations
between 1994 and the end of 1997, roughly corresponding
to the last fully observed minimum in solar activity. The
second interval includes observations between 1998 and the
end of 2001, corresponding to the last solar maximum.

[34] There is a clear lack of time-stationarity in these PRC
profiles. Noting that the variance of the electron flux obser-
vations between the two intervals is relatively constant, and
assuming that the observation errors are similarly time
stationary, the only reason for the change in error statistics
is that a relevant input variable was left out of the regression.
If one imagines that the included input is statistically inde-
pendent of any such missing variables, it follows that the
interval over which the included input exhibited the largest
variance will correspond to the largest PRCs. This partly
explains why, in general, B, predicts better during solar
maximum, and V,, predicts better during the solar minimum
interval; the variance of B, is larger during solar max, and
the variance of Vj,, is larger during solar min.

[35] This does not explain why p,, does a better job
predicting electron flux variations during solar minimum
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Figure 2. Time-lagged regression coefficients and their
respective 1 — o error bars are shown for each of three single-
input linear filters designed to “predict” the log;y of 2—
6 MeV electron fluxes when convolved with their respective
solar wind inputs at a single representative L shell.

since, just like B, the variance of pj, is actually larger
during solar max. However, as we already noted, plasma
density is highly anticorrelated with solar wind speed. If
optimized coefficients in the single-input filters driven by
P are just compensating for the fact that a relevant and
correlated input variable was not included in the OLS
procedure, it is possible that this overwhelms the effects
of nonstationary variances in py,. A similar phenomenon
occurs with B, predictions made at the highest L shells,
which appear slightly better during solar minimum than
solar max. The next phase of our study moves beyond
single-input linear filters and considers the simultaneous
effects of different solar wind inputs on radiation belt flux
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variations; in particular, what happens when those inputs are
correlated with one another.

5. Multi-Input Radiation Belt Predictions

[36] Figure 4 contains representative components of a
three-input linear filter and is analogous, if not directly
comparable, to Figure 2. However, whereas the OLS
estimation of the coefficients for each filter described
previously was designed with the a priori assumption that
there were no other relevant inputs, here the regression
matrix was expanded to include observations of all the solar
wind inputs being considered in this study. As before, the
standard errors for the solar wind bulk speed associated
coefficients are larger than the other inputs due to the high
degree of autocorrelation in the Vs, time series. Correlations
between the separate inputs slightly increase the standard
errors of all the coefficients, but the general improvement in
predictive ability helps compensate for this increase in
uncertainty.

[37] The small standard error bars should imply that
multi-input filter coefficients must not differ much from
those estimated using a single input only. However, they
clearly do differ from their single-input counterparts, often
by factors of several to tens of standard deviations, a fact
that becomes even more apparent in Figure 5. One obvious
difference is the absence of a flux dropout between L ~ 4
and L ~ 8 immediately following increases in V, when
other inputs are considered. The dropout remains in the B,
component filter profile, however. Also, the brief enhance-
ment seen between L ~ 3 and L ~ 4 in the single-input V,,,
response profile disappears when additional inputs are
considered, while the relatively prolonged response to B,
remains. Considered together, these results are highly sug-
gestive that the single input Vj,, filter coefficients compen-
sate for dynamics normally associated with changes in the
B,y when the latter is not considered during OLS parameter
estimation.

[38] A less obvious but possibly more relevant difference
can be seen in the p,,, response profile. If one compares the
model output from the single-input py,, filter with the
predictions made using the p, component of the multi-
input filter alone (neither shown here), they will see that
enhancements predicted using the single-input filter occur
when plasma density drops, while flux enhancements pre-
dicted using the p,, component of the multi-input filter
correspond to increases in plasma density. Even though the
negative response between L ~ 4 and L ~ 8 initially appears
to remain intact when switching from the single-input to the
Psw component of our multi-input filter, it can no longer be
considered just a consequence of the anticorrelation
between py,, and V,. Indeed, it appears to be a genuine
response to changes in the plasma density. We conclude
from these results that single-input py,, filters provide a
highly biased representation of the true radiation belt
dynamic response to solar wind changes when much more
relevant input variables, especially the solar wind bulk
speed, are neglected during OLS estimation.

[39] The multi-input component PRCs shown in the right-
hand column of Figure 5 provide additional dynamical
insights into the system being studied, especially when
contrasted with their single-input counterparts. Recall that
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Figure 3. Single-input, L-shell-dependent FIR linear filter profiles are shown on the left. Their
corresponding PRC profiles are shown on the right and represent the square root of the fractional variance
of the log;( of 2—6 MeV electron fluxes attributable to the single input if no other inputs are considered.

these may be considered the square root of a fraction of the
variance of observed radiation flux that can be attributed to
each input when every other input is held constant. Since we
have already acknowledged that our inputs are correlated,
this is not a physically realistic scenario, but this is precisely
what we attempted to do in the single-input case by
effectively fixing all other relevant inputs equal to zero. If
the additional inputs are uncorrelated with the input being
considered, there should be no difference between single-
and multi-input profiles when real observations of addition-
al inputs are considered. A comparison of single-input
PRCs with component PRCs from the multi-input filter
should therefore help identify where single-input filters
compensate for missing but correlated inputs.

[40] First, the p, component of the multi-input filter
appears to have little predictive ability at any but the lowest
L shells when it is considered in conjunction with the other
two inputs, and this is mostly a consequence of the high

dynamic stability of the inner electron belt. Combined with
the fact that single input py, filters predict better during
solar minimum, despite the fact that plasma density exhibits
more variability during solar max (see section 4), it becomes
clear that p,,~driven predictions mostly compensate for the
effects of a neglected V,, input in the form of biased filter
coefficients. However, as explained in section 2 and
Appendix C, extraneous inputs will not adversely affect
the optimal estimation of filter coefficients for the more
relevant inputs. The fact that the py,, filters retain at least a
little predictive power means that this input variable should
not be dropped from the model unless the OLS estimation
becomes an unreasonable computational burden.

[41] Next, the PRC profiles for the B,,, component
predictions are largely unchanged from their single-input
counterparts, whether determined from the entire 1994—
2001 sample or one of the two subintervals. This suggests
that the time variability of the B,,, PRCs is mostly a
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Figure 4. Time-lagged regression coefficients, and their
respective 1 — o error bars, are shown for each of three
components of a multi-input linear filter designed to
“predict” the log;y of 2—6 MeV electron fluxes when
convolved with their respective solar wind inputs indepen-
dently at a single representative magnetic L shell.

function of the changing variance of B, itself, since the
variance of the electron flux is relatively constant from one
subinterval to the next, not cross correlations with other
inputs. One difference between single- and multi-input
PRCs is seen easily at the highest L shells, where the
influence of B;,,r during the solar minimum interval drops
to near zero when additional inputs are considered. This
region was noted previously, when we hinted that optimized
single-input B, filter coefficients might compensate for a
missing input because time-dependent single-input PRCs
were not consistent with changes in the variance of B;,,
between subintervals. We conclude that single-input B,
filters associated with these altitudes contain biased coef-
ficients.
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[42] Finally, while the Vi, component PRC profiles are
largely unchanged above L ~ 5, there is a substantial drop
seen in the influence of solar wind bulk speed on electron
flux between L ~ 2 and L ~ 3 when additional inputs are
considered. In contrast, while the tendency for B;,,to drive
flux variations in the same region is not very strong, there is
little difference between single- and multi-input filters.
Therefore, of the solar wind inputs considered here, we
conclude that B,,, is the biggest contributor to flux varia-
tions in the so-called slot region. Researchers exploring
connections between plasmapause position and strong elec-
tron enhancements at low L shells [e.g., Baker et al., 2004b;
Goldstein et al., 2005] may find this result intriguing, but a
first-principles physical explanation of this phenomenon is
beyond the scope of the present paper.

[43] As additional relevant inputs are included in the
linear regression, improvements in the cumulative predic-
tive ability of the model are expected because of the fact
that the statistically independent portions of partly correlat-
ed input data will either contribute nothing or add positively
to the total predictable variance in the electron flux time
series; they cannot subtract from the model’s predictive
ability if optimized using OLS [Cohen and Cohen, 1983].
This may be seen in Figure 6 as a significant drop in flux in
mid-1997, a major enhancement lasting through the final
months of 1999 and into early 2000, and an impulsive
increase extending to relatively low L shells early in 2001,
all of which correspond to similar episodes in the real data
presented in Figure 1. These changes are simply not
apparent in single-input filter predictions, which have
not been presented here for the simple reason that they do
not exhibit any interesting time-variability. Clearly, our
model misses some major events, especially during 1998.
However, 1998 was characterized by a number of strong
CME-driven magnetic storms that exhibit a highly nonlin-
ear influence on the radiation belts, something our filters,
and indeed any linear model, is not capable of reproducing
with time-stationary coefficients.

[44] Perhaps more important than visually “interesting”
time series is the fact that cumulative prediction error
statistics will become more time stationary as additional
inputs are incorporated into the multi-input filter if it is
assumed that observation uncertainty remains constant in
time. This can be seen at all but the lowest L shells in Figure 7.
This cumulative PRC profile is directly comparable to each of
the profiles presented in section 4 because the statistics
describe the predictive power of the model as a whole.
Regions where cumulative PRC:s still vary substantially with
time are indicative of missing relevant inputs that are partly
correlated with those already included in the model. These
missing independent variables might be a nonlinear transfor-
mation of an input already used or a completely different
variable, including time-lagged versions of the electron flux
itself. We performed a brief survey of some typical nonlinear
transformations, including logarithms and low-order poly-
nomial expansions, and concluded that the trivial improve-
ments seen in our prediction statistics meant that the
relatively raw versions of our three solar wind parameters
were adequate for our needs.

[45] We also tried several new variables, including non-
linear combinations of our three inputs. These gave small,
but nontrivial, improvements beyond L ~ 4 that may be
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Figure 5. Multi-input, L-shell-dependent FIR linear filter profiles are shown on the left. Their
corresponding PRC profiles are shown on the right and represent the square root of the fractional variance
of the log;y of 2—6 MeV electron fluxes if every other input considered in the multi-input model were

held constant.

studied more closely in the future, but they failed to account
for the large temporal discrepancy seen in the PRC profile
below L ~ 2. The latter region is characterized by extremely
autocorrelated prediction errors, with time constants on the
order of the sampling period. According to statements made
in section 2, and more importantly the demonstrations
provided in Appendix C, this means that normal standard
error bars will not provide a realistic bound on filter
coefficients estimated for this region. The large difference
between PRCs calculated during solar minimum and solar
max may very well be consistent with the true uncertainties
for this region.

[46] We found that if a one-day time-lagged measurement
of the electron flux itself was added to the regression matrix,
prediction statistics improve substantially, especially at the
lowest L shells. The addition of this autoregressive (AR)

component to our model creates what is most commonly
referred to as an autoregressive filter with exogenous
inputs (ARX) or, in some older literature, an autoregressive
moving average filter. The AR component does so much to
improve prediction statistics at lower L shells because the
inner electron radiation belt is highly persistent, exhibiting
e-folding times on the order of months, if not years. The 16
one-day time lags used in our FIR filters cannot mimic this
entire response, leading to strongly biased coefficients
below L ~ 2. The single AR term actually serves as a
discretized form of the first-order linear dynamics that
dominate the inner belt, while the remaining FIR coeffi-
cients now account for solar wind perturbations and higher-
order dynamics only.

[47] There are problems associated with the naive use of
AR filters. If the flux observations on which the AR model
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Figure 6. Cumulative multi-input predictions of the log;o of 2—6 MeV electron fluxes as a function of L shell.

operates are rewritten as ¥ = Y + ¢, and the AR model is
composed of a single linear coefficient b,,, the predicted
output will be Y, = b,, Y. + byesq. In other words, the
same linear dynamics govern both the model’s predicted
output ¥ and the prediction error . The coefficient b, is
guaranteed to be unbiased, and therefore represent the true
linear first-order response of the system, if and only if the
errors are white Gaussian noise sequences with a mean of
zero, since these cannot influence the OLS estimation of the
AR coefficient. If € is not distributed like white Gaussian
noise, the OLS-estimated b, may still be unbiased, but only
if the assumption that system and error dynamics are
identical holds true. This will not be the case in general,
so b, will be biased in order to compensate for correlated
structure in the error term that is unrelated to the system
dynamics. This can lead to a severe misrepresentation of the
true system dynamics.

[48] This problem is inherent to the OLS estimation
procedure [Ljung, 1999; Nelles, 2001]. One solution to this
dilemma is to drop OLS and use a more sophisticated
maximum likelihood solver that guarantees unbiased esti-
mates. This usually involves some sort of iterative algorithm
and can be computationally burdensome. Aside from the
computational requirements, however, there is generally no
guarantee that these algorithms will converge to a globally
optimal set of filter coefficients, since the recursive nature
of the integration required to generate Y results in an
inherently nonlinear estimation problem. For these reasons,
we will save the addition of an AR term to our model for a
future study and accept the poor error statistics generated by
FIR filters in the inner electron radiation belt.

6. Summary and Conclusions

[49] As discussed in this paper, so-called finite impulse
response (FIR) linear filters have been used for decades to
help investigators of radiation belt dynamics reproduce
variations in the real world observations, even when a full
understanding of the underlying system dynamics was
absent. These models do not constitute a real dynamical
system in the strictest sense, since they do not possess
feedback mechanisms. Even single-input filters are nothing
more than sophisticated multivariate linear regression models
whose independent variables happen to be composed of time-
lagged versions of one relevant input. This, however, means
that such models are in fact more flexible than their name

would suggest. In essence, they constitute a normalized super-
posed epoch representation of a system’s average response,
which may or may not be linear, that can be used to make
robust predictions at relatively little computational expense.

[s0] The most common type of FIR models used to date
have been single-input linear prediction filters. These are
relatively easy to generate from a limited set of training data,
and they accurately predict all but the most extreme modu-
lations observed in the magnetosphere because this system is
driven strongly by external perturbations, namely the solar
wind. In addition, single-input FIR filters have been able to
provide valuable physical insights about the Earth’s radiation
belts because this is a system characterized by low-order
dynamics, at least at global scales, and the time-lagged filter
coefficients do indeed resemble the true dynamical response
of the radiation belts. However, it was clear early on that
variations in the radiation belts occurred that were not related
to the single input used to drive the model.

[51] Vassiliadis et al. [2005], often cited in this paper,
represented the first systematic survey of the dynamic
response of the electron radiation belts to a variety of inputs
in an effort to better understand both the temporal and
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Figure 7. [L-dependent PRCs based on the cumulative
output of the multi-input filter. These represent the square
root of the total fractional variance, Ry, captured by the
model, and are directly comparable to the single-input PRCs
presented in Figure 3.
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spatial coupling between these inputs and changes in
energetic electron flux within the Earth’s magnetosphere.
Even though this study continued to use single-input linear
filters, a careful analysis of the prediction error statistics
associated with each of these models led to a statistically
robust demonstration that the radiation belts not only
exhibit a complicated internal dynamical structure but that
different solar wind inputs impact the radiation belts in very
distinctive ways.

[52] The original intent of the study detailed in the present
paper was simply to document a model that was designed to
incorporate this improved understanding of radiation belt
dynamics into a better prediction tool. In the process,
however, we came to appreciate many nuances associated
with multivariate linear regression, many of which have been
detailed in section 2 of this paper, as well as Appendix C.
Perhaps the most important conclusion to come from this is
that underspecified models will invariably possess biased
coefficient estimates. In other words, if all the relevant inputs
are not included in the OLS estimation, coefficients asso-
ciated with the inputs that are included will adjust to
compensate. At best, this improved understanding of multi-
variate linear regression complicates any physical interpre-
tations that have been made previously using single-input
linear filters; at worst, it might completely invalidate them.
Fortunately, well-considered error statistics are fairly robust
to these issues, and we find no cause to contradict most of the
conclusions reached by Vassiliadis et al. [2005].

[53] We briefly reviewed our own single-input filter
results from the viewpoint of multivariate linear regression,
partly to nudge the reader away from the more traditional
dynamical systems interpretation of linear filter output but
also to suggest insights that may not have been addressed in
previous magnetospheric studies. First, we noted that the
L-dependent response profiles for single-input models
tend to share many common features, a phenomenon
that arises because the FIR filter coefficients corre-
sponding to different solar wind inputs are mostly mim-
icking the low-order internal dynamics of the electron
radiation belts. This is necessary because the feedback
mechanism necessary for a proper dynamical response is
not included in the FIR model structure. In one sense,
these FIR coefficients are all severely biased because the
most relevant input, the previous day’s electron flux, was
left out of the regression. We accept this bias because the
FIR filters used here nearly all had a sufficient number
of time lags to capture the radiation belt’s initial response,
peak, and decay back to zero.

[54] Some similarities between the single-input response
profiles began to fade as we moved from an analysis of the
filter coefficients themselves and began to look more
closely at the prediction error statistics in the form of
PRC profiles as a function of L shell. These fading simi-
larities were especially obvious when comparing the V5,
and p,,-driven predictions with those derived from B,,,rand
its corresponding filters. The predictive ability of the former
was relatively high across a broad range of higher (>4Rg) L
shells, while the latter exhibited two distinct peaks, one near
L ~ 3 and the other near L ~ 5.

[55] There was significant time-variability in these PRC
profiles as well. The B;,,and V,, PRCs appear to vary as
functions of solar cycle in a manner consistent with the
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variances of their respective observation time series (that is,
B;,,sPRCs are higher at solar max, when the variance of the
interplanetary magnetic field is strongest, while V,, PRCs
are higher at solar minimum, when the variations in
observed solar wind speed are most pronounced). In con-
trast, the time-variability of the p,, PRC profiles roughly
matched that of the V,, PRCs, even though the variance in
Psw 18 largest during solar maximum. This turns out to be a
consequence of the large anticorrelation that exists between
Vew and p,, which generates a fairly strong bias in the
single-input filter coefficients for p,, when no other inputs
are considered.

[s6] Our multivariate statistical approach led naturally to
a comparison of single-input linear filters with their analo-
gous component filters in multi-input linear filters, as well
as single-input with cumulative multi-input predictions.
Several additional insights arose from this comparison.
First, most of the filter coefficients vary significantly from
their single-input counterparts, often by several standard
errors, implying that the single-input filters are composed of
biased coefficients. Such changes indicate that a flux
decrease seen between L ~ 4 and L ~ 8 that was common
between the B;,, and V,, single-input filter profiles is due
almost exclusively to B, since the dropout disappeared
from the V,, component of the multi-input response profile
entirely. Also, the quick positive response to solar wind
speed between L ~ 3 and L ~ 4 disappeared in the multi-
input filter profile, while the corresponding flux enhance-
ment following increases in B;,, remained when other
inputs were considered. This implies that the single-input
Vs, response profiles contain biased filter coefficients. In
addition to a substantial drop in the average magnitude of
the filter coefficients, we noted that while flux enhance-
ments were associated mostly with drops in py,, when the
single-input filter is used, it is the increases in p;,, that tend
to correspond to flux enhancements when the multi-input
filter is used. We interpreted this to mean that single-input
P filter coefficients are severely biased as a consequence
of neglecting the highly anticorrelated solar wind bulk
speed in the OLS estimation.

[57] Next, multi-input PRC profiles pointed toward addi-
tional regions where the single-input linear filter coefficients
were likely biased as a result of missing relevant inputs.
Single-input py,, predictions in particular seem to be largely a
consequence of biased coefficients, since the p,,, component
of the multi-input filter captured almost none of the observed
variance in the electron flux measurements when other
inputs were considered. PRC profiles for B;,, changed at
higher L shells, while PRC profiles for V,, changed between
L ~ 2 and L ~ 3, when comparisons were made between
single- and multi-input component filters. This indicates that
Vi 1s the principal solar wind driver at the highest radiation
belt altitudes, and B, is the principal driver in the slot
region. Finally, the PRC profile associated with the cumu-
lative multi-input predictions showed how adding relevant
inputs to the linear regression not only improves the overall
predictive ability of the model with each added input but also
how multi-input linear filters reduce the time variability of
the prediction error statistics relative to single-input filters.

[s8] A substantial fraction of the overall electron flux
variability can be attributed to the one-day time-lagged
electron flux itself, especially at the lowest L shells, sug-
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gesting that an ARX model might better describe these
system dynamics. However, we described a well-known
shortcoming of the OLS estimation procedure that increases
further the potential for biased filter coefficients when time-
lagged observations of the desired system output are incor-
porated into the estimation procedure. Any useful model of
the Earth’s electron radiation belts should probably include
some sort of AR term, but we left the more sophisticated
estimation algorithm necessary to do this properly to be
described and implemented in a future study.

[s9] All of this is not to say that the best approach to
modeling magnetospheric systems like the electron radia-
tion belts is to throw every conceivable input at the problem
and expect physically meaningful coefficients to come from
the OLS procedure. Even though OLS should in principle
weigh the true relevant input to the model higher than
another variable that happens to be correlated with the true
input, a more likely scenario involves two variables, neither
of which are the true input, but are both correlated to some
degree with the true input. It remains the researcher’s
responsibility to study the filter coefficients and, perhaps
more importantly, the general statistical characteristics of all
the inputs, the output, and the prediction errors, in order to
deduce the true relevant input and the physics that govern
how it couples with the system being studied. Multi-input
linear filters facilitate this process.

Appendix A: Estimating R?

[60] Equations (3) and (4) in section 2 describe two
different relationships between R, or the explained variance
of a dependent variable, standardized multivariate linear
regression coefficients, and any linear correlations that exist
between the dependent variable and/or separate independent
variables. Here we present proofs that lead to these relation-
ships in the case of two independent variables. Proofs relating
to an arbitrary number of independent variables are a simple,
if somewhat algebraically tedious, extension of the following.

[61] First, consider a two independent variable linear
regression with zero-mean errors e:

Y = biXy +boXy + ¢ (A1)

There are two ways to proceed, the first leads to equation
(3) in section 2. First, square each side of equation (Al).
Assuming the coefficients are constant, applying expecta-
tions leads to:

E(r?) = E(Ibii + boXo + T

E(Y?) = E(bIX] + 2610y X1 Xo+D3X5 + 2b1 X + 2byeXs + €7)

E(Y?) = blo%, + b3o%, + 2b1by0x,x, + 2b10ey, + 2broey, + 07
(A2)

Since the intercept is 0 by construction, the expected value
of ¥? is just its variance o¥>. Now if we assume that the
errors are white noise, and therefore unrelated to the
independent variables in any way, and we assume that we
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defined the dependent and all independent variables such
that oy = oy = 1, the right-hand side of equation (A2)
simplifies to:

1 = b + b5 + 26\ byoyx, + 02

K K

1= Z b;b}o’x,x/ + 0’?
i=1 j=1

1 =R+ o?

N 0) N
1 = explained % variance + unexplained % variance (A3)
[62] It would have been just as valid to multiply both sides
of equation (A1) by the variable Y and then apply expec-
tations. Again, assuming the coefficients are constant, we get:

E(YY) = biEX\Y) + b E(XyY) + E(eY)
E(YY) = BiE(X\Y) + bEGY) + E(e[b1 Xy + boXo + €])

E(YY):blo'le-szJXzy-i-blO'gXZ-i-Jz (A4)
Here the terms oy Y represent cross correlations between the
dependent variable Y and each independent variable X;.
Likewise, o.x, represents cross correlations between the
errors and the independent variables, which should be zero
if the errors are indeed white noise. Finally, once again
assuming that o3 = U)z(k = 1 and simplifying the left-hand
side gives:

/ / 2
1 =bloyy +byox,y +0:

K
IIZb;{O’XA,y-i—O'g
k=1
1:R2+U§
L.0r. ..

1 = explained % variance + unexplained % variance (A5)
This proof corresponds to the relationship given in
equation (4).

Appendix B: Ordinary Least Squares (OLS)

[63] The OLS algorithm minimizes a quadratic function,
the sum of the squared errors, and so possesses a single
global minimum that can be solved for analytically. This
linear estimation algorithm has origins that can be traced
back in time to Carl Friedrich Gauss and has undergone
countless refinements since, so we will not provide a full
derivation here. We do briefly summarize how it is usually
implemented in practice using matrix notation. As we
already noted, Yand X - _ x represent a single dependent
and a set of independent variables used for our linear
regression model, respectively. If our training data sample
includes N observations, it is possible to write out the
system of equations as follows:

Yi=a+bXi) +b2X01 + -+ bgXg 1 + €
Yo=a+bXio+b2Xoo+ - +bgXio + &2

Yy=a+bXiy +DbXon + -+ bxXgn + en
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This set of equations can be expressed in the following
matrix formulation:

Y = XB+e¢ (B2)
where the matrices Y, X, B, and & are defined as:
Y L X X Xk.1
Y, I Xio Xop X2
Y = X =
Yn L1 Xin Xow Xk
a _
€
by :
&2
B= |b|e= (B3)
' )
by -

Assuming that the so-called regression matrix X has rank K,
implying that no independent variable is perfectly correlated
with any other, and assuming that K is less than the number
of observations N, the optimal set of coefficients minimiz-
ing the sum of the squared errors ¢'c is determined by
calculating the pseudo-inverse of the nonsquare matrix X
and multiplying it by the vector of dependent variables Y, as
shown in equation (B4).

B=[x"x] XY (B4)

Appendix C: Uncertainty and Bias in Parameter
Estimates

[64] Iftwo independent and finite samples of observations
are drawn from a theoretically infinite population, then used
to calculate a set of regression coefficients using OLS, the
two estimates will differ because of errors . As more
samples are drawn, and additional estimates are calculated,
the Central Limit Theorem dictates that a Gaussian distribu-
tion of estimates will evolve whose mean equals the
expected value of the estimate in the absence of errors. An
estimate distribution with a relatively small standard devia-
tion is said to be “efficient.”” An efficient estimate is unlikely
to differ significantly from the expected value and can
usually be trusted. Conversely, an estimate distribution with
a large standard deviation indicates that any single parameter
estimate is likely to differ from the population’s expected
value and should be used with caution.

[6s] The so-called “standard error” of a regression coef-
ficient is really just a convenient means of determining the
standard deviation of an estimate distribution using only the
parameter estimate from a single sample and its associated
prediction errors. It does this by making the assumption that
€ is a zero-mean, perfectly random sequence (white noise).
Our confidence (or lack thereof) in the kth estimated
coefficient can then be calculated using equation (C1).

1 - R
Sy, = m ("—) (1)
(] _Rg{ka)(N_K_l) X
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In this relationship, N represents the size of the sample, and
K represents the number of independent variables, while oy
and oy_represent the standard deviations of the dependent
and each independent variable, respectively. The R;Z(ka
term in the denominator of the radical is similar to the
coefficient of determination described in section 2 and
Appendix A. Here, however, each X, serves as the
dependent variable, while Gy is defined as the set of all
independent variables other than X;. This is known as
multicollinearity and describes how confidence in a
particular estimate will be reduced if the independent
variables are correlated with one another. In the extreme
case when a perfect correlation exists between two
independent variables, it is impossible to ascertain which
one actually caused a change in the dependent variable,
and accordingly, the standard error becomes infinite.

[66] Figure C1b demonstrates this phenomenon using a
virtual population constructed by simulating a two-input
system whose linear coefficients equal 1.3 and —0.5,
respectively. Two scenarios were then explored, one in
which the two inputs were uncorrelated with one another,
and the other in which the two inputs exhibited a finite
correlation equal to ~0.9. The simulated output from each
model was corrupted with white noise to ensure a nonzero
standard deviation for each parameter’s estimate distribu-
tion. The standard deviation of the distributions of OLS
estimates made from samples of the population constructed
with uncorrelated inputs are approximately equal to 0.10,
which is exactly the value of the standard errors calculated
using equation (C1). The standard deviation of the distri-
butions of estimates made using correlated inputs is equal to
0.24, also identical to the standard error, and indicative of
the higher level of uncertainty in those estimates that arises
from correlations between independent variables.

[67] The assumption that prediction errors comprise a
zero mean, white noise sequence rarely holds true in
practice. In particular, it is often the case in time series
analysis that the error term exhibits first-order, positive
autocorrelated structure [Pindyck and Rubinfeld, 1991]. If
the interval over which a sample is taken is characterized by
significant errors, and that interval is less than, or compa-
rable to, the correlation time of the errors, the estimated
parameters will deviate significantly from their expected
value. However, because the errors were positively corre-
lated with themselves, the spread of these residuals will
actually be relatively small, even though the actual ampli-
tudes might be quite large. If another sample is taken, the
autocorrelated nature of the residuals imply that it is equally
likely that the residuals are small or even that they are
significant but of opposite sign to the first scenario. The end
result is that S, _for any single sample will be less than the
standard deviation determined by calculating a large number
of parameter estimates using many independent samples
from a common population to build up a distribution of
these values. In other words, the presence of a first-order
positive autocorrelation in the error term will lead to
overconfidence in the regression coefficients.

[68] To demonstrate this particular phenomenon, another
virtual population was constructed similar to the first, except
that this time it was corrupted with noise exhibiting a first-
order positive autocorrelation with a correlation time equal to
approximately 100 simulation steps. Figure Cla shows the
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(a) Autocorrelated Prediction Errors
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Figure C1.
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(b) Crosscorrelated Inputs
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The spectral characteristics of both inputs and observation noise may influence estimate

uncertainty and/or bias. (a) Comparison of distributions of parameter estimates made using observations
of simulated populations corrupted by white (-WN) and correlated (-CN) noise, respectively.
(b) Comparison of estimate distributions made from populations corrupted by white noise only but whose
inputs may (CN-) or may not (WN-) be correlated with one another. (c) Comparison of estimate
distributions made from populations corrupted by white noise only and whose inputs may or may not be
correlated with one another, when an extraneous input is included in the OLS estimation procedure.
(d) Comparison of estimate distributions made from populations corrupted by white noise only and whose
inputs may or may not be correlated with one another, when a relevant input is left out of the regression.

estimate distributions for the parameters for both the white
noise corrupted simulation and the colored noise corrupted
simulation. The standard deviations for estimates derived
from both scenarios are equal to approximately 0.10, how-
ever when one uses equation (C1) to determine the standard
error, it turns out to be approximately 0.05 for the colored
noise scenario. This is significantly smaller than the real
uncertainty, represented accurately by the blue histograms in
Figure Cla, and may lead the unwary investigator to assign
more confidence to the parameter estimates than they should.

[69] There are circumstances when even though the
efficiency may be high, the population’s expected value
does not equal the true parameter value. This is called bias
error and has two primary causes, (1) a correlation exists
between the error term and one or more of the independent
variables and (2) the model structure is under specified (that
is, one or more relevant inputs are disregarded during
parameter estimation). The former is very similar to the
problem of an autocorrelated error term, except that the
errors do not have a mean equal to 0 for the entire
population, and skewed parameter estimates will never
cancel out, regardless of how many independent samples
are taken or how large the sample size is. A familiar real-
world example might involve an instrument whose meas-

urements always exhibit an offset equal to a linear function
of its target’s true value. This might produce an output that
is clearly nonphysical to a trained expert, but the OLS
algorithm has no way of differentiating this offset from what
should be the measurement’s true value. There is very little
an investigator can do to alleviate this type of bias except to
remain vigilant during the instrument design and calibration
processes.

[70] The second source of bias error, model under spec-
ification, is pertinent to multivariate linear parameter esti-
mation, but before we address this issue, let us first consider
a model that has been over-specified. Imagine yet another
virtual population that has been constructed using only the
first of the two true coefficients discussed previously. The
investigator has no a priori knowledge that this is the case
however, so they choose a second, and ultimately irrelevant,
independent variable to include in the OLS procedure.
While this second independent variable exhibits no rela-
tionship to the dependent variable, it is still potentially
correlated with the first independent variable. Estimates of
the first regression coefficient remain exactly the same as
they were previously, as seen in Figure Clc. Estimates for
the second regression coefficient, however, shift to the right,
resulting in a zero-centered distribution. This is not bias.
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Even though the virtual population was constructed with the
assumption that there was no second independent variable,
the final result is identical to a situation in which there
actually was a second independent variable, but the second
coefficient was defined to be zero.

[71] Figure Cld tells a very different story. The same
virtual populations used for Figures Cla and C1b were used
in this scenario, but the investigator mistakenly assumed
that only a single independent variable was relevant. Using
OLS to estimate 1000 single coefficient estimates from
hundred-observation samples generates very different dis-
tributions than what was expected had the number of
independent variables been chosen correctly. In the case
of uncorrelated independent variables, OLS simply regards
the second independent variable as an additional source of
error, thus decreasing the efficiency. Because these errors
are uncorrelated with errors introduced intentionally during
construction of the virtual population, there is no bias error.
On the other hand, when there exists a correlation between
the two true independent variables, but only one is used to
try to explain variations in the dependent variable, the mean
of the estimated parameter distribution is shifted signifi-
cantly from its true value. This bias will remain even as the
sample size tends toward infinity.

[72] This tendency for bias error when the linear model is
underspecified is also pertinent when a linear model is used
to approximate nonlinear system dynamics. A simple exam-
ple involves a standard polynomial model.

Y=a+bXi+bXP + -+ byX) +¢ (C2)

[73] If equation (C2) represents the true system, but
equation (1) is used as an approximation of these dynamics,
OLS will give a biased estimate of the intercept and single
regression coefficient b; because we have failed to include
all relevant variables. The same conclusion holds true even
when the polynomial is only an approximation of an
inherently nonlinear equation.

[74] Acknowledgments. The authors thank D. Vassiliadis, R. S.
Weigel, and T. P. O’Brien for valuable discussions pertaining to this study.
We are also indebted to the National Space Science Data Center for
collecting and redistributing the OMNI space physics data set at http:/
omniweb.gsfc.nasa.gov. This material is based upon work supported by the
NSF’s National Space Weather Program, award number ATM-0208341,
and by the Center for Integrated Space weather Modeling, an NSF Science
and Technology Center, award number ATM-0120950.

[75] Zuyin Pu thanks the reviewers for their assistance in evaluating
this paper.

References

Akasofu, S.-I. (1979), Interplanetary energy flux associated with magneto-
spheric substorms, Planet. Space Sci., 27, 425—431.

Amoldy, R. L. (1971), Signature in the interplanetary medium for sub-
storms, J. Geophys. Res., 76, 5189—5200.

Baker, D. N., J. B. Blake, R. W. Klebesadel, and P. R. Higbie (1986),
Highly relativistic electrons in the earth’s outer magnetosphere 1: Life-
times and temporal history 1979—1984, J. Geophys. Res., 91, 4265—
4276.

Baker, D. N., R. L. McPherron, T. E. Cayton, and R. W. Klebesadel (1990),
Linear prediction filter analysis of relativistic electron properties at
6.6 Rg, J. Geophys. Res., 95, 15,133—15,140.

Baker, D. N., G. M. Mason, O. Figueroa, G. Colon, J. G. Watzin, and R. M.
Aleman (1993), An overview of the Solar, Anomalous, and Magneto-
spheric Particle Explorer (SAMPEX) mission, /EEE Trans. Geosci.
Remote Sens., 31, 531-541.

RIGLER ET AL.: RADIATION BELT ELECTRONS RESPOND TO MULT

A06208

Baker, D. N., R. S. Weigel, E. J. Rigler, R. L. McPherron, D. Vassiliadis,
C.N. Arge, G. L. Siscoe, and H. E. Spence (2004a), Sun-to-magnetosphere
modeling: CISM forecast model development using linked empirical
models, J. Atmos. Sol.-Terr. Phys., 66, 1491-1497, doi:10.1016/
jJjastp.2004.04.011.

Baker, D. N., S. G. Kanekal, X. Li, S. P. Monk, J. Goldstein, and J. L.
Burch (2004b), An extreme distortion of the Van Allen Belt arising from
the ‘Hallowe’en’ Solar Storm in 2003, Nature, 432, 878 -881.

Bargatze, L. F., D. N. Baker, R. L. McPherron, and E. W. Hones Jr. (1985),
Magnetospheric impulse response for many levels of geomagnetic activity,
J. Geophys. Res., 90, 6387—6394.

Clauer, C. R. (1986), The technique of linear prediction filters applied to
studies of solar wind-magnetosphere coupling, in Solar Wind-Magneto-
sphere Coupling, pp. 39—-57, edited by Y. Kamide and J. A. Slaving,
Terra Sci., Tokyo.

Cohen, J., and P. Cohen (1983), Applied Multiple Regression/Correlation
Analysis for the Behavioral Sciences, Second Edition, Lawrence Erlbaum
Associates, Florence, Kentucky.

Cook, W. R., et al. (1993), PET: A proton/electron telescope for studies
of magnetospheric, solar, and galactic particles, /EEE Trans. Geosci.
Remote Sens., 31, 565-571.

Goldstein, J., S. Kanekal, D. N. Baker, and B. R. Sandel (2005), Dynamic
relationship between the outer radiation belt and the plasmapause during
March—May 2001, Geophys. Res. Lett., 32, L15104, doi:10.1029/
2005GL023431.

Gosling, J. T., A. J. Hundausen, V. Pizzo, and J. R. Asbridge (1972),
Compressions and rarefactions in the solar wind: Vela 3, J. Geophys.
Res., 77, 5442—5454.

Hruska, A., and J. Hruska (1989), Solar wind modulation of the auroral
zone geomagnetic activity when the interplanetary magnetic field has a
strong northward component, J. Geophys. Res., 94, 5479—5484.

Iyemori, T. H. Maeda, and T. Kamei (1979), Impulse response of geo-
magnetic indices to interplanetary magnetic field, J. Geomagn. Geoe-
lectr, 31, 1-9.

Kanekal, S. G., D. N. Baker, and J. B. Blake (2001), Multisatellite mea-
surements of relativistic electrons: Global coherence, J. Geophys. Res.,
106, 29,721-29,732.

King, J. H., and N. E. Papitashvili (2005), Solar wind spatial scales in and
comparisons of hourly wind and ace plasma and magnetic field data,
J. Geophys. Res., 110, A02104, doi:10.1029/2004JA010649.

Klimas, A. J., D. Vassiliadis, and D. N. Baker (1997), Data-derived analogs
of the magnetospheric dynamics, J. Geophys. Res., 107, 26,993 —27,009.

Ljung, L. (1999), System Identification: Theory for the User, Prentice Hall,
Upper Saddle River, N. J.

McPherron, R. L., D. N. Baker, and L. F. Bargatze (1986), Linear filters as a
method of real time prediction of geomagnetic activity, in Solar Wind-
Magnetosphere Coupling, pp. 85-92, edited by Y. Kamide and J. A.
Slavin, Terra Sci., Tokyo.

Nagai, T. (1988), “Space Weather Forecast™: Prediction of relativistic elec-
tron intensity at synchronous orbit, Geophys. Res. Lett., 15, 425—428.

Nelles, O. (2001), Nonlinear System Identification, Springer, New York.

O’Brien, T. P., R. L. McPherron, D. Sornette, G. D. Reeves, R. Friedel, and
H. J. Singer (2001), Which magnetic storms produce relativistic electrons
at geosynchronous orbit?, J. Geophys. Res., 106, 15,533 —15,544.

Paulikas, G. A., and J. B. Blake (1979), Effects of the solar wind on
magnetospheric dynamics: energetic electrons at the synchronous orbit,
in Qualitative Modeling of Magnetospheric Processes, Geophys. Monogr.
Ser., pp. 180—202.

Perreault, P, and S.-I. Akasofu (1978), A study of geomagnetic storms,
Geophys. J. R. Astron. Soc., 54, 547-573.

Pindyck, R. S. and D. L. Rubinfeld (1991), Econometric Models and
Economic Forecasts, McGraw-Hill, New York.

Pizzo, V. (1983), Quasi-Steady Solar Wind Dynamics, in Solar Wind 5,
NASA Conf. Publ., CP-2280, pp. 675—691, edited by M. Neugebauer.
Rigler, E. J., D. N. Baker, R. S. Weigel, D. Vassiliadis, and A. J. Klimas
(2004), Adaptive linear prediction of radiation belt electrons using the
Kalman filter, Space Weather, 2, S03003, doi:10.1029/2003SW000036.

Rigler, E. J., D. N. Baker, R. S. Weigel, and D. Vassiliadis (2005), Solar
wind-driven electron radiation belt response functions at 100-min time
scales, Adv. Space Res., 36, 2401-2406, doi:10:1016/j.as1.2003.09.070.

Trattner, K. J., and H. O. Rucker (1990), Linear prediction theory in studies
of solar wind-magnetosphere coupling, Anales Geophys., 8, 733—738.

Vassiliadis, D., D. N. Baker, A. J. Klimas, and D. A. Roberts (1995), A
description of the solar wind-magnetosphere coupling based on nonlinear
filters, J. Geophys. Res., 100, 3495-3512.

Vassiliadis, D., A. J. Klimas, S. G. Kanekal, D. N. Baker, and R. S. Weigel
(2002), Long-term-average solar cycle, and seasonal response of magne-
tospheric energetic electrons to the solar wind speed, J. Geophys. Res.,
107(A11), 1383, doi:10.1029/2001JA000506.

16 of 17



A06208 RIGLER ET AL.: RADIATION BELT ELECTRONS RESPOND TO MULT A06208

Vassiliadis, D., R. S. Weigel, D. N. Baker, S. G. Kanekal, and A. J. Klimas ~ Wiener, N. (1949), Extrapolation, Interpolation, and Smoothing of
(2004), Probing the solar wind-inner magnetospheric coupling: Valida- Stationary Time Series with Engineering Applications, John Wiley
tion of relativistic electron flux models, J. Atmos. Sol.-Terr. Phys., 66, and Sons, Hoboken, N. J.

1399-1409, doi:10.1016/j.jast.2004.03.025.

Vassiliadis, D., S. F. Fung, and A. J. Klimas (2005), Solar, interplanetary,
and magnetospheric parameters for the radiation belt energetic electron D. N. Baker, Laboratory for Atmospheric and Space Physics, University
flux, J. Geophys. Res., 110, A04201, doi:10.1029/2004JA010443. of Colorado, 1234 Innovation Drive, Boulder, CO 80303, USA.

Vasyliunas, V. M., J. R. Kan, G. L. Siscoe, and S.-I. Akasofu (1982), E. J. Rigler and M. Wiltberger, High Altitude Observatory, National
Scaling relations governing magnetospheric energy transfer, Planet. ~ Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307,
Space Sci., 30, 359-365. USA. (jrigler@hao.ucar.edu)

17 of 17



