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a b s t r a c t

We describe implementation of a modular system of computer codes for inversion of electromagnetic
geophysical data, referred to as ModEM. The system is constructed with a fine level of modular
granularity, with basic components of the inversion – forward modeling, sensitivity computations,
inversion search algorithms, model parametrization and regularization, data functionals – interchange-
able, reusable and readily extensible. Modular sensitivity computations and generic interfaces to
parallelized inversion algorithms provide a ready framework for rapid implementation of new applica-
tions or inversion algorithms. We illustrate the code's versatility and capabilities for code reuse through
implementation of 3D magnetotelluric (MT) and controlled-source EM (CSEM) inversions, using
essentially the same components.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Egbert and Kelbert (2012) (hereinafter EK12) present a general
discrete formulation for linearized electromagnetic (EM) inverse
problems in the frequency domain, treating a range of EM geophy-
sical techniques and inversion approaches in a unified notational
framework. This framework highlights the elements, and dependen-
cies between elements, that are common across applications and
inversion algorithms, providing a basis for a general modular system
of computer codes for EM geophysical inverse problems. EK12
provided a brief overview of such a system, which they referred to
as ModEM: the Modular system for Electromagnetic inversion. Here
we present a more detailed description of this software package,
implemented in the Fortran 95 programming language.

Geophysical electromagnetic inversion approaches and parallel
computer codes have developed rapidly in the past decade or so
(notably, Newman and Alumbaugh, 2000; Zhdanov and Hursan,
2000; Haber et al., 2004; Newman and Boggs, 2004; Kelbert et al.,
2008; Siripunvaraporn and Egbert, 2009; Avdeev and Avdeeva,
2009 and others; see also review papers Avdeev, 2005;

Siripunvaraporn, 2011 and the overview in EK12). While most of
these efforts focused on a specific EM inverse problem, solved with
a particular computational approach, recent efforts in the context
of joint inversion (e.g., Moorkamp et al., 2011; Commer and
Newman, 2009; Stefano et al., 2011), have seen the development
of more flexible inversion frameworks, which allow a single
inversion algorithm to be applied to a range of different data
types. Our focus here is on a finer granularity of modularization,
with the goal of making the basic components of the inversion –

forward modeling, sensitivity computation, inversion search
algorithms, model parametrization and regularization, and data
functionals – interchangeable, reusable and readily extensible.
Thus, while ModEM is flexible enough to be applied to a range of
EM data types, and indeed to joint inversion, it also provides a
code base suitable for rapid development and prototyping of new
parallel inversion algorithms, and for experimentation with dif-
ferent model parametrization and regularization schemes. To the
extent possible (given limitations of Fortran 95; Akin, 2003)
we have taken an object oriented approach to maximize code
reuse, and to provide templates for rapid development of new
applications. We also use the terminology of this approach in our
discussion here.

To allow readers to more easily follow the general development,
we provide a brief overview of the theory and notation of EK12 in
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Section 2. However, as our focus is on program structure and logic,
mathematical formulae required for implementation of specific rou-
tines are not repeated here; readers are referred to appropriate
sections in EK12 for such details. ModEM can be roughly organized
into three functional levels which we discuss in successive sections.
Section 3 provides an overview of ModEM, and describes implemen-
tation of top level “generic” inversion and sensitivity routines, includ-
ing a coarse grained general parallelization. These top-level routines,
and the parallelization (discussed in Section 4) are intended to be
directly reusable for awide range of different problems. This generality
requires that all basic objects manipulated by the inversion (forward
operators, data functionals, model parameters, electric and/or mag-
netic field solution vectors, etc.) follow uniform conventions. A
distinctive characteristic of our formulation is the capability to
accommodate most modifications in the geophysical forward problem
(details of the solver, types of observable, etc) and easily translate
these into implementation of the needed numerical derivative. This
uniformity is provided through the “interface” level, discussed in
Section 5. In effect this level of ModEM provides specific instances of
the abstract classes used by top-level routines. Actual computations for
specific problems (e.g., forward problem solutions, evaluation of EM
field components at specified data site locations) are implemented in
the numerical discretization modules, described in Section 6. Section 7
provides specific examples for two 3D EM inverse problems: magne-
totelluric (MT) and controlled-source electromagnetic (CSEM). The
two methods, which differ with regard to sources and data types, are
implemented through variations of the interface layer. This example
illustrates that due to the fine grained modularity of our approach, not
only the parallel inversion algorithms, but also the numerical dis-
cretization (including the finite-difference 3D EM forward solver) and,
more importantly, the sensitivity computations may be effectively
reused for these two very different EM techniques.

2. Preamble: theory and notation

The theory of geophysical inversion has been previously
described in generic terms in Parker (1994), Zhdanov (2002),
Tarantola (2005), among others, and the general principles of
discrete sensitivity computations for nonlinear electromagnetic
inverse problems in geophysics discussed, for example, in
McGillivray et al. (1994), Newman and Hoversten (2000) and EK12.

In our discussion of these ideas throughout this paper, we use
the notation of EK12, which is outlined in Table 1. For complete-
ness we summarize key points here. ModEM provides a general
framework for solving regularized EM inverse problems, i.e.,
minimization of a penalty functional of the form

Φðm;dÞ ¼ ðd�fðmÞÞTC�1
d ðd�fðmÞÞþνðm�m0ÞTC�1

m ðm�m0Þ ð1Þ
to recover an Earth conductivity model parameter vectorm, which
provides an adequate fit to a data vector d. In (1), Cd is the
covariance of data errors, fðmÞ defines the forward mapping, m0 is
a prior or first guess model parameter, ν is a trade-off parameter,
and Cm (or more properly ν�1Cm) defines the model covariance or
regularization term.

The forward mapping requires solution of the frequency
domain EM partial differential equation (PDE), which in discrete
form is written generically as

Sme¼ b: ð2Þ
The subscript m here denotes the dependence of the PDE operator
on a specific model parameter, and in the following is often
omitted; e represents the discrete EM field solution; and b is the
forcing (boundary conditions and/or source terms). Typically ewill
represent only the primary field (e.g., electric) that is actually
solved for; the other dual field (e.g., magnetic) is then computed
via a simple transformation operator h¼ Te. Simulated observa-
tions are computed from the solution e(and possibly m) via

dj ¼ f jðmÞ ¼ψ jðeðmÞ;mÞ: ð3Þ

Using the chain rule, a general expression for the Jacobian (or
sensitivity matrix) J (¼ ∂f=∂m) can be given, in the vector nota-
tion, as

∂f j
∂m

����
m ¼ m0

¼ ∂ψ j

∂e

����
e ¼ e0 ;m ¼ m0

" #
∂e
∂m

����
m ¼ m0

þ∂ψ j

∂m

����
m ¼ m0

ð4Þ

where e0 is the solution to (2) for model parameter m0. A simple
calculation shows

∂e
∂m

����
m ¼ m0

¼ �S�1
m0

∂
∂m

ðSme0Þ
� �

m ¼ m0

¼ S�1
m0

P: ð5Þ

So, in matrix notation the Jacobian can be expressed as

J¼ LS�1
m0

PþQ : ð6Þ

The matrix P depends on details of the numerical model imple-
mentation and the conductivity parametrization. An explicit for-
mula for P can be given, assuming the forward operator can be
written

Sme� S0eþUðπðmÞ○VeÞ; ð7Þ
where S0, U and V are some linear operators that do not depend
on the model parameter vector m, πðmÞ is a (possibly non-linear)
mapping from the model parameter space to the numerical grid,
and ð○Þ denotes the component-wise multiplication of vectors.
Then we have

P¼ �U diagðVe0ÞΠm0 ; ð8Þ
where Πm0 is the Jacobian of the model parameter mapping πðmÞ
evaluated at the background model parameter m0. All of the usual
forms for 2D and 3D EM induction operators can be expressed as
in (7); e.g., for the second-order 3D staggered-grid finite difference
equation for the electric field (with possible source term js)

∇� ∇� Eþ iωμsE¼ js ð9Þ
S0 corresponds to the discrete curl–curl operator, U� iωμI, V� I,
and πðmÞ �sðmÞ is a mapping from the model parameter space to
the cell edges, where electric field components are defined.

Table 1
List of notation from Egbert and Kelbert (2012). Here, M indicates the model space,
D the data space, and SP;D stand for the spaces of EM fields defined on primary and
dual grids, as defined in Egbert and Kelbert (2012).

Symbol Represents

m;m0AM Model parameter vectors
πðmÞ : M↦SP;D Mapping from model parameter to primary or dual grid
Πm0 : M↦SP;D ∂π=∂m, evaluated at m0

Cm : M↦M Model covariance
e; e0ASP Solution vectors on the primary grid
dAD Data vector
ψ jðeðmÞ;mÞ : SP↦C j'th data functional, in general non-linear
ljASP ∂ψ j=∂e, evaluated at e0 ;m0; j'th row of L
qjAM ∂ψ j=∂m, evaluated at e0 ;m0; j'th row of Q
L : SP↦D Sparse matrix constructed from lj
Q : M↦D Sparse matrix constructed from qj

S�1
m : SP↦SP Forward solver; Sme¼ b

P : M↦SP Operator �∂ðSme0Þ=∂m, evaluated at m0

J : M↦D Full Jacobian ∂ψ=∂m; J¼ LS�1
m0

PþQ
T : SP↦SD Linear mapping from the primary to dual grid
~Tπðm0 Þ;e0 : SP;D↦SD ∂ðTπðmÞe0Þ=∂π, evaluated at πðm0Þ
λPASP Primary grid interpolation coefficients (sparse)

λDASD Dual grid interpolation coefficients (sparse)
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The matrix L in (6) represents the linearized data functionals. This
can be decomposed into two sparse matrices as L¼ ATΛT , where
columns of Λ are sparse vectors which represent evaluation func-
tionals for point observations of the electric and magnetic fields. The
operator T is generally involved in evaluation of dual field compo-
nents. The matrix A depends on details of the (generally non-linear)
observation functionals (e.g., impedance, apparent resistivity), which
may combine magnetic and electric measurements from one or more
locations. More explicitly, each row of L takes the form

ðljÞT ¼
∂ψ j

∂e

����
e0 ;m0

 !T

¼ ∑
KP

k ¼ 1
aPjkλ

P
kþ ∑

KD

k ¼ 1
aDjk½TTλDk � ð10Þ

where λPk and λDk are sparse vectors defined on the primary and dual
grids (see EK12, Section 5.2.3), and lj is a primary grid sparse vector.

When either the evaluation functionals, or the field transfor-
mation operator T have an explicit dependence on the model
parameter there is an additional term in the sensitivity matrix,
which we have denoted Q in (6). Rows of this matrix can be
effectively computed using the expression

ðqjÞT ¼
∂ψ j

∂m

����
e0 ;m0

 !T

¼ΠT
m0

∑
KD

k ¼ 1
aDjk ~T

T
πðm0Þ;e0λ

D
k

" #
; ð11Þ

following the notation of Table 1. Note that the expression in the
square bracket in (11) is also a sparse vector on the primary or dual

grid, depending on where the electrical conductivity (or resistiv-
ity) πðmÞ is defined.

The Jacobian represents a linear mapping, giving the perturba-
tion to the data resulting from a model parameter perturbation
(δd¼ Jδm). A wide range of gradient-based inversion algorithms
make use of this operator, along with the transpose or adjoint
(δm¼ JTδd). ModEM does not necessarily (or even typically) form
the Jacobian, or the component matrices in (6), but rather imple-
ments the solver for the discrete system S�1

m , the operators P, L, Q ,
and the compound Jacobian operator J, together with adjoints.
These operators, together with model and data covariances, were
then used to implement a range of gradient-based inversion
algorithms. As discussed in EK12, and in detail below, in most
EM inverse problems there is significant structure to the data
vector, implied by the multiplicity of transmitters and receivers.
This structure is also reflected in the Jacobian and the component
matrices, and thus in the organization of ModEM.

3. Overview of the ModEM program

The organization of ModEM is summarized in Fig. 1, where we
distinguish three general levels. At the top are generic components
which implement parallelized inversion algorithms and sensitivity
computations which can be applied to a wide range of EM inverse
problems. At the lowest level are components which define the

Fig. 1. Schematic overview of ModEM. Conceptual modules, which are described in Sections 3–6, are denoted by boxes, with dependencies indicated by arrows. Some boxes
are also marked with symbols to indicate the vectors and operators from Egbert and Kelbert (2012) which they implement (see also Table 1). The shaded small boxes indicate
which dictionaries are used in each module. The (optional) Message Passing Interface (MPI) module used for the parallel implementation is shown in lighter colors. Modules
marked “MPI” also require additional subroutines to allow transmission of derived data types defined within these modules between processors.
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basic discretization and numerical solution approach used for the
forward problem. These routines might be used for a variety of
frequency domain EM problems, with varying source and receiver
configurations. The middle layer provides an interface which hides
specific details of the numerical implementation from the generic
inversion modules, and defines problem specific details (e.g.,
source and receiver configurations). In this section, we guide the
reader through the overall organization of ModEM code, and
discuss the top level, which is the core of ModEM. The interface
layer will be further discussed in Section 5, and the numerical
discretization layer in Section 6.

As summarized in Section 2, the basic data objects which are
manipulated in any inversion scheme include model (m) and data
(d) vectors, and EM solution and source fields (e and b). Except for
the data vector these are treated in all top level routines as
essentially abstract classes, with no specific implementation
details referenced by the generic inversion or sensitivity routines.
These are implemented in Fortran 95 as data structures with
standardized type names and interfaces, allowing implementa-
tions for different problems to be used interchangeably within the
inversion system. For each of these data objects a standard series
of methods must be defined (creation, destruction, vector space
methods, dot products, etc.), again with standardized interfaces.
The model parameter m interacts more directly with the numer-
ical discretization level, and will be discussed further in Section 6.
EM solution (e) and source field (b) objects are application specific,
and actual implementations of these abstract classes are defined in
the interface layer, discussed in Section 5. Note that we also make
extensive use of a sparse vector representation for elements of the
EM solution space, to allow efficient representation of observation
functionals.

In contrast to the other basic data objects, data vectors d have
been implemented with a fixed structure which is accessible to,
and heavily used by, the top level inversion and sensitivity
routines. We do this to allow efficient treatment of the multi-
transmitter/multi-receiver data sets that are common to EM
methods. For example, for 3D MT there are multiple frequencies,
each requiring separate forward solutions. For each frequency
there will be multiple sites, and at each site 8 real components
in the impedance tensor, which require solutions for two inde-
pendent source polarizations for their evaluation. Controlled
source problems have a multiplicity of sources and receivers,
which may interact in different ways. Data vectors are thus
organized according to three attributes which we refer to as
transmitter, data type, and receiver. The transmitter attribute
uniquely defines the forward problem that must be solved,
including both the specific partial differential equation (in general
this will depend on frequency) and the sources and boundary
conditions. The receiver attribute is used to define, in conjunction
with data type, the measurement process that must be applied to
the forward solution to allow comparison between measured and
predicted data. These attributes are used to define a natural
organization of the full data vector d, which at the coarsest level
consists of an array of structures corresponding to different
transmitters TX. Each of these in turn contains one or more sub-
structures for different data types DT, which store all components
for all receivers for that TX/DT pair.

The three data attributes TX, DT, RX are treated abstractly at the
level of the inversion and sensitivity modules. This is achieved by
storing the actual information associated with these attributes as
lists, which we call dictionaries. Thus, the transmitter (TX) dic-
tionary has an entry for each unique forward problem, providing
any data such as the frequency or geometry of the source required
to set up and solve the forward problem. Entries in the data type
(DT) dictionary define data functional types included in the
inversion, such as impedance, vertical field transfer function,

phase tensor, and apparent resistivity. The receiver (RX) dictionary
provides information about site locations, and if appropriate,
orientation/configuration of the observing system. The diction-
aries are only employed by the interface level modules (their use is
denoted by small corner boxes in Fig. 1). This separation of the
data values from their accompanying meta data information
makes the data vector structure completely generic, allows mixing
data of different types, and greatly simplifies addition of new data
types. At the same time, tagging components of d with these
generic attributes provides enough information about the trans-
mitter/receiver structure so that forward modeling and sensitivity
computations can be organized efficiently. For example, the
transmitter attribute can be used to ensure that each required
forward problem is solved once (and only once), and then used to
compute predicted data (or implement appropriate sensitivity
calculations) for all necessary receivers and data types.

A key feature of ModEM is the ability to easily implement any
linearized inversion scheme that can be expressed in terms of the
basic data objects d, m, e and b, together with the forward
mapping fðmÞ, Jacobian J, and data and model covariances Cm

and Cd. From the perspective of the inversion algorithms only a
small number of conceptually simple operations need to be
implemented for the covariance operators: multiplication of
model parameter objects by Cm, C1=2

m , and perhaps C�1=2
m , and

multiplication of data vector objects by C1=2
d and C�1=2

d . Interfaces
for these symmetric covariance operators are simple, with both
inputs and outputs being model parameters or data vectors, as
appropriate. So far we have only implemented simple diagonal
data error covariances within the data vector class. Model covar-
iances, which are generally more complicated, are discussed
further below in conjunction with the model parameter class.
General implementations of high level routines for forward and
Jacobian operators are implemented in the sensitivity module,
following conventions given in Table 2.

Using these components we have so far implemented several
inversion algorithms including non-linear conjugate gradients
(NLCG; e.g., Rodi and Mackie, 2001), data space conjugate gradi-
ents (DCG; Siripunvaraporn and Egbert, 2007), and the multi-
transmitter hybrid CG-Occam scheme of Egbert (2012). Example
pseudo-code and further details are given in Appendix A.

Jacobian routines are further modularized, using the general
decomposition of (6) (or its transpose) to implement multiplication
by J (or JT ), using the solver for the discrete system S�1

m , and the
operators P, L, Q (or their adjoints). For efficiency, and to simplify
parallelization, these computations are organized by transmitter.
Thus, generic routines in the sensitivity module (see Table 2) imple-
ment multiplication by L and Q for a single transmitter. Each row of
these operators (lj and qj in Table 1) corresponds to a single data
type/receiver and defines the derivative of a single (generally non-
linear and multi-component) data functional ψj with respect to the
EM solution e(lj) and, if necessary, the model parameter m(qj).
Individual rows, which can generally (but not always) be represented
by sparse vectors in the appropriate space, are application dependent
and are constructed by routines in the interface layer. L and Q (or the
corresponding adjoints) are called, along with the solver and the
operator P (or PT ; see Section 5) to complete Jacobian calculations for
a single transmitter. Higher level routines (Jmult, JmultT in Table 2)
then loop over transmitters to complete the multiplication by the full
Jacobian.

The sensitivity module also provides routines (fwdPred) that
implement the full forward problem d¼ fðmÞ, and for calculation
of the full Jacobian (calcJ). Note that fwdPred optionally returns
the array of EM solutions objects e computed for all unique
transmitters, so that these can be saved (e.g., after evaluation of
data misfit) and used for subsequent sensitivity calculations (e.g.,
to evaluate the gradient of the penalty functional).

A. Kelbert et al. / Computers & Geosciences 66 (2014) 40–53 43



The organization of sensitivity computations we have described
so far is simple and general, but may not be efficient for all
problems. As discussed in EK12, in some cases computations with
the Jacobian can be “factored” for efficiency into components that
depend on the receiver and on the transmitter. The simplest
example is the controlled source cross-well imaging problem
considered by Newman and Alumbaugh (1997), with NT transmit-
ters and NR receivers. The full Jacobian for this problem can be
constructed from forward solutions for each transmitter, and
adjoint solutions for each receiver. Thus if NT �NR the most
efficient way to implement a Gauss-Newton scheme is to pre-
compute and save these NT þNR solutions and use these to
implement multiplication by J and JT (Newman and Alumbaugh,
1997). Implementation of such a scheme in ModEM is also
straightforward – the basic implementation of routines Jmult

and JmultT described above are simply replaced, using an
implementation that pre-computes and saves the appropriate
forward and adjoint solutions. All of the computations in these
variants are readily implemented using virtually the same com-
ponents required for the basic versions outlined above.

In summary, routines in the sensitivity module manage inter-
actions among the components of the sensitivity calculation (data
functionals L and Q ; solver S�1

m ; P), using the structure of the data
vector to ensure efficiency. As we discuss next, a coarse paralle-
lization (over transmitters, or unique forward problems, similar to
the approach used in Siripunvaraporn and Egbert, 2009) is also
implemented at the level of the sensitivity module, and is thus
completely isolated from details of the specific EM inverse
problem that ModEM is applied to.

4. Parallelization

ModEM incorporates a flexible coarse-grained parallelization
over forward problems following the scheme of Meqbel (2009), a
variant of the master–worker parallelization method. The scheme
minimizes communication between workers and master, and
reduces memory requirements, by having workers store results
of forward computation for reuse in the solution of the adjoint
problem. Given the data vector transmitter/receiver structure, this
can be implemented quite easily, through parallelized versions of
the upper level routines which organize Jacobian calculations
(Jmult, JmultT and calcJ in Table 2), also modified to allow
for the bookkeeping necessary to maintain storage efficiencies in

the worker nodes. Parallel versions of these routines are contained
in a separate module.

The scheme is implemented using calls to the standard Massage
Passing Interface (MPI) communication library, with only complica-
tions arising from efforts to minimize interaction of the paralleliza-
tion with the rest of the ModEM system. For example, messages
passed between processors using MPI are restricted to standard data
types in the programming language used (i.e., in Fortran 95: Integer,
Real, etc.), while ModEM makes extensive use of derived data types,
e.g., to store m, e and d as abstract encapsulated objects. Thus, to
allow a generic implementation of the parallelization which can pass
such objects around without reference to internal details of the
actual data structure, it is necessary to implement specialized utility
routines for each specific instance of the Model Space, Solution Space
and Data Space modules. These are routines with generic names and
interfaces that create an MPI structured data type from the Fortran
derived data type, thus allowing communication routines in the MPI
module to also treat these objects abstractly while sending and
receiving. The application specific MPI source code for these utility
routines is kept in separate files, which are included in the appro-
priate serial modules when compiling for parallel execution. Finally
note that relatively trivial modifications to each specific inversion
routine is required, essentially to route calls to forward modeling and
Jacobian calculations through the parallel or serial versions of these
routines, as appropriate. To avoid having two copies of these routines
this is accomplished through compiler directives.

The general relationship of the MPI Main module to the rest of
ModEM is illustrated in Fig. 1, and an overview of our MPI
implementation is given in Fig. 2. Briefly, after processor initializa-
tion, one processor is assigned as the master, and the rest as
workers. The workers enter a queue (in routine Worker_Job, say)
and await messages from the master, while the master steps
through the actual inversion algorithm, until a step requiring
solution of the forward or adjoint problem is reached. At this
point the master distributes messages to all workers, indicating
which task to perform, and providing any necessary input data.
The worker executes the requested job, typically for a single
transmitter, by calling the appropriate sensitivity or interface layer
subroutines–the same code that would be executed in a serial
implementation. Thus, except for data type conversion, essentially
all MPI specific routines are hosted inside a single MPI module.

Our parallel scheme is designed to minimize communication
between processors. Consider for example the matrix-vector
multiplication implemented in JmultT. As noted in Table 2,

Table 2
Public Routines used for sensitivity computations. Conventions used in calling arguments: iDt¼data type; iRx¼receiver; iTx¼transmitter. Other symbols are as in Table 1,
with subscript zeros denoting background model parameters and solution vectors used for linearization, and for the template data vector. The template data vector d0 gets
overwritten with the computed vector d on output, where appropriate. Z denotes an array of real responses. Optional inputs or outputs are in parentheses; m' is the optional
“imaginary” component of the model parameter output by PmultT.

Routine name Inputs Outputs Used for Module

initSolver iTx,m e0 (e,b) fwdPred, Jmult, JmultT, calcJ Forward solver (driver)
exitSolver e0 (e,b) fwdPred, Jmult, JmultT, calcJ Forward solver (driver)
fwdSolver iTx (FWDorADJ,b) e fwdPred, Jmult, JmultT, calcJ Forward solver (driver)
Pmult e0,m0,m b Jmult Solver sensitivities
PmultT e0,m0,e m(m') JmultT, calcJ Solver sensitivities
Qmult e0,m0,d0,m d Jmult Data sensitivities
QmultT e0,m0,d m(m') JmultT Data sensitivities
Lmult e0,m0,d0,e d Jmult Data sensitivities
LmultT e0,m0,d b JmultT Data sensitivities
Qrows e0,m0,iDt,iRx m Qmult, QmultT, calcJ Data functionals
Lrows e0,m0,iDt,iRx l Lmult, LmultT, calcJ Data functionals
dataResp e,m,iDt,iRx Z fwdPred Data functionals
fwdPred m, d0 d(e) Parallel inversion algorithms Jacobian computations
calcJ m0, d0 J Parallel inversion algorithms Jacobian computations
Jmult δm, m0, d0 (e) δd Parallel inversion algorithms Jacobian computations
JmultT m0, δd (e) δm Parallel inversion algorithms Jacobian computations
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this routine takes the background EM solution (which typically
will already have been computed to evaluate model misfit) as an
optional input. We keep the solution for a particular transmitter on
the processor used to compute it, and assign the same transmitter
to this processor for the task of computing the product JTd (for a
single transmitter). Thus it is not necessary to gather EM solutions
for all transmitters on the master processor and then re-distribute
these to the workers. The master sends only a transmitter index
and the data vector (d) to each worker to perform the multi-
plication in parallel. Of course the resulting model parameters
must still be returned to the master to be summed to complete
computation of JTd for the full model vector.

5. Interface layer

The central grouping in Fig. 1 provides an interface between the
generic sensitivity and inversion modules discussed in the pre-
vious section, and the implementation specific details of the

numerical discretization modules. In particular, the EM solution
and source terms e and b are defined at this level in the solution
space module, as is the abstracted forward solver (which maps b
to e), the problem specific data functionals (which map e to d), and
the operator P, which defines the sensitivity of the forward solver
to the model parameter. All of these objects are used extensively
by the generic sensitivity and inversion routines, and thus must
have standardized names and interfaces, as in Table 2.

From the perspective of object oriented programming, the
interface layer defines specific instances of abstract classes, which
implement the methods needed by the generic top-level sensitiv-
ity routines. In addition to hiding details of the actual numerical
implementation from generic inversion routines, the interface
layer is where source and receiver details for specific EM applica-
tions are defined. As we shall see in Section 7, inversions for
different EM methods (e.g., MT and CSEM) may be developed
using the same base of numerical discretization modules and the
same generic inversion modules through modifications to the
interface layer.

Fig. 2. Pseudo-code for the Message Passing Interface (MPI) modular implementation.

A. Kelbert et al. / Computers & Geosciences 66 (2014) 40–53 45



Central to the interface layer is the solution space module,
which defines derived data types used to represent the solution
vector e and source vector b of the discrete forward problem (2) for
a single transmitter. These two distinct data types represent
objects which are effectively in the same space, but we have
found it useful to distinguish between vectors used for sources and
solutions. The sparse vector data type is also used to represent
elements of this same space, in this case to provide a storage
efficient representation of the sparse data functionals which
constitute rows of the operator L. Basic methods for manipulating
all of these objects, including creation, destruction, I/O, copying,
linear algebra and dot-product operations, are used extensively
throughout the Jacobian computations and thus must be imple-
mented with standardized names and interfaces.

Note that the full solution vector employed in an inverse
problem will in general be an array of solution vector objects, one
for each transmitter. Elements of this array could in principal be
quite different, for example in the case of joint inversion. For
instance, joint inversion of 3D MT and CSEM could be easily
accommodated by storing a solution for the MT problem in eð1Þ
(encapsulating solutions for two source polarizations for one
period), while eð2Þ could represent a solution for a single con-
trolled source transmitter. And, for the 2D MT problem, the array
of solution vector objects would generally contain both TE mode
(electric field) and TM mode (magnetic field) forward solutions.
The interface layer hides such complications from the generic
sensitivity and inversion routines, though obviously these details
are critical to implementation of actual computations.

5.1. Forward solver

The purpose of this module is to provide a uniform interface
between forward modeling routines implemented in the numer-
ical discretization layer, and the generic inversion and sensitivity
routines of Section 3. The key public routines in this module
include initialization (initSolver), deallocation and clean up
(exitSolver), and the actual solver (fwdSolver), with inter-
faces as defined in Table 2. Internal functioning of these routines is
application dependent, and controlled by the index into the
transmitter dictionary, iTx. For example, in the 3D MT case (see
Section 7) the output of fwdSolver e consists of solutions for two
source polarizations, requiring separate calls to the actual numer-
ical solver with different boundary conditions, for the frequency
defined by iTx. In the 2D MT case only a single solution is required,
but now there are two possibilities: either a TE or a TM solver
might be required, depending on the mode, which again would be
defined (along with the frequency) with reference to the trans-
mitter dictionary. While applications may differ in internal func-
tion (a loop over polarizations for the 3D MT implementation vs. a
case statement for the 2D case), routine names, interfaces, and
abstract functionality (i.e., “compute e for transmitter iTx”) are
standardized.

Initialization (initSolver) is explicitly separated from actual
solution to enable more efficient computational strategies. For
example, if a direct matrix LU factorization is practical, this can be
implemented in the initialization routine, and executed only if the
coefficient matrix has changed from the previous solver call. More
generally, repetition of operator setup steps can also be minimized
by keeping track of attributes (frequency, conductivity parameter)
used for the previous solution. The responsibility for these
efficiencies lies with the initialization routine – higher level
routines that require solutions of the governing PDE always call
the initialization routine first. The cleanup routine exitSolver is
only called when it is desired to deallocate all operator arrays and
return solver module data to the state it had before the first call to
initSolver. Finally, fwdSolver implements the general solver,

allowing arbitrary forcing and boundary conditions, and solutions
for both the usual forward problem and its transpose, or adjoint.
By default, forcing for the forward problem is computed internally,
with reference to the transmitter dictionary. For sensitivity calcula-
tions the forcing is provided as an optional argument, along with
an optional switch that specifies execution of the adjoint or
forward solver.

5.2. Data functionals

This module implements the data functionals (ψ jðe;mÞ in
Table 1), as well as the linearizations with respect to e (lj; rows
of L) and, if necessary, m(qj; rows of Q ). As shown explicitly in
EK12, these functionals can be expressed in terms of (1) a mapping
which converts the primary field (e.g., electric) to the dual field (e.
g., magnetic); (2) interpolation operators for the primary and dual
fields, which simulate the process of measuring EM components at
specific locations; (3) functionals of the measured field compo-
nents, e.g., an impedance or apparent resistivity (see Eqs. (10) and
(11)). The first two components are tied closely to the numerical
grid, and are implemented at the level of the numerical discretiza-
tion, to be discussed in Section 6. These decompositions of the
linearized data functionals into a set of elementary mappings
allow for a completely streamlined modular implementation of
the data functionals, making it especially easy to write the
sensitivity derivations for any general data functional in terms of
pre-existing elementary operators.

Three public routines with standardized names and interfaces
(see Table 2) implement data functionals for use in sensitivity and
inversion computations. dataResp evaluates the (possibly non-
linear) data functionals ψ jðe;mÞ for a single arbitrary receiver/data
type. Information about the data type (e.g., an impedance, appar-
ent resistivity or phase) is obtained by reference to the data type
dictionary (indexed by iDt) while meta-data such as the site
location is obtained from the receiver dictionary (indexed by iRt).
Through calls to lower level (numerical implementation specific)
routines all necessary interpolation operators are created, and
magnetic and electric components at the observation location are
evaluated. Any additional computations (e.g., impedance, ampli-
tude, phase) are completed at the interface layer. Note that in
general multiple components (e.g., all elements of an impedance
tensor) may be returned for some data types. Note also that all
data functional routines implement computations (selected by a
case statement) for the full range of data types and transmitters.

Lrows implements the linearization of the data functional with
respect to variations in the EM solution e. In the simplest case,
where the data is just a measured field component (as for example
in CSEM methods) and ψ jðe;mÞ is already linear in e, this routine
simply computes the appropriate evaluation functional (exactly as
in dataResp), and returns this, packaged as a sparse vector in the
EM solution space. For the more general case the linearized
functionals lj are linear combinations of those used to represent
basic field component evaluation, with coefficients that depend on
the background EM solution e0 (see Eq. (10). These sparse vectors
are used in Lmult (Table 2) to form the dot products with e
required to assemble the data vector object d¼ Le. LmultT multi-
plies these vectors by the appropriate data components, and sums
to form the forcing for the adjoint system LTd. See Section 7 for a
specific example (3D MT).

The function of Qrows is similar, but instead of data functionals
this routine returns one or more model parameters, qj. A general
expression for these rows of Q is given in (11), with further details
provided in EK12, Section 5.2.3. Here we note only that each of
these model parameters can be expressed as a product of a sparse
vector in the EM solution space (formed as for lj with reference to
the data type and receiver dictionaries), and the (transposed)
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linearized model parameter mapping ΠT
m0

(see Section 6).
Although in many cases the result will be sparse in the model
parameter space, there are exceptions, so ModEM represents the
qj as full model parameters. Also, note that while model para-
meters are assumed to be real, the sparse vectors in the EM
solution space that they multiply are complex. As discussed in
EK12, in some situations (e.g., computation of the full Jacobian)
both real and imaginary parts are required, while for other
situations (e.g., computation of the data misfit derivative) only
the real part is required. In Qmult (Table 2), dot products are
formed with the input model parameter and assembled into the
data vector object d¼Qm. For the transpose QmultT, the model
parameters qj are multiplied by the respective data components
and summed to obtain m¼Q Td.

5.3. Solver sensitivity

The final component of the interface layer implements P, which
effectively defines the sensitivity of the forward problem coeffi-
cient matrix Sm to the model parametrization (see Eq. (5)). As seen
from (8) this operator can be divided into two components:
U diagðVe0Þ, which depends explicitly on the problem formulation
(i.e., the form of the PDE used) and the numerical implementation,
but not the specific model parametrization, and Πm0 , the linear-
ized mapping of the model parameter to the grid. Pmult computes
the product Pδm by first applying Πm0 to model parameter object
δm, and then applying (U diagðVe0Þ) to the result. This routine
returns a source vector object, of the proper type to provide forcing
for the solver in a computation such as Jδm¼ LS�1Pδm. PmultT
multiplies a solution vector object by PT , reversing these steps, and
resulting in a model parameter vector. As with QmultT, the output
of PmultT is intrinsically complex, and in some cases (e.g.,
computing the full sensitivity matrix) both real and imaginary
parts are saved.

Therefore, the decomposition of the solver sensitivity operator
P in Eq. (8) into the elementary components of the forward
problem, identified in Eq. (7), simplifies implementation of sensi-
tivity computations for a wide range of EM problems. Once the
forward solver is theoretically decomposed into a combination of
elementary discrete operators, the solver sensitivities may be
immediately expressed in terms of these elementary components
and plugged into the inversion scheme to provide the correct
discrete numerical derivative.

6. Numerical discretization

The final group of modules (Fig. 1) provide the basic numerical
grid, structures which represent primary and secondary fields, the
actual numerical forward solver, and a basic set of interpolation
functionals for point evaluation of electric and magnetic fields. For
purposes of our discussion here we also include the model
parameter module in this group, although, as discussed in
Section 3, these can also be considered higher level objects, which
are manipulated directly by inversion and sensitivity routines, and
thus must conform to generic ModEM interface standards. How-
ever, even though the internal structure of m (and the model
covariance) can be quite independent of the grid and other
numerical implementation details, the model parameter does play
a critical role in defining the discrete numerical operator and thus
must interact quite strongly with other numerical discretization
components.

The remaining numerical discretization modules have no direct
interaction with the generic inversion and sensitivity routines, so a
wide range of specific implementations can be accommodated
through modifications at the interface layer. It is thus most useful

to discuss these modules in the context of a specific example. We
do this in Section 7, after offering some general guidelines on
those features, conformance to which ensures the functionality
required by more generic components, and an overview of how
modules can be organized (e.g., as outlined in Fig. 1) to simplify
interfacing with the rest of ModEM.

The basic numerical discretization data objects are the grid, and
structures which represent the discretized electric and/or mag-
netic fields. In the terminology of EK12, the latter are elements of
the primary and dual spaces, SP and SD. Although not strictly
required, explicitly defining an EM field data type (here the type
name is unimportant), along with the related linear algebra and
other basic data object operations, greatly simplifies construction
of the required encapsulated solution vector and source vector
objects (e and b) discussed in Section 5. Similarly, defining sparse
vector representations for elements of SP simplifies construction
of data functionals. An example of an EM field module, including
relevant interactions with higher level modules, is given in Section 7.
An encapsulated data structure which defines the numerical grid
does have to be defined, although there are no specific requirements
on the form that this takes. Some routines in the sensitivity module
pass pointers to the grid, e.g., to allow data site locations to be
referenced to the numerical solution grid.

Forward modeling is of course the core of the inversion. In
principal an existing forward code can be used, but to be useful for
ModEM several conditions must be met. First, the solver should be
general, in the sense that the solution can be computed correctly
for arbitrary sources and boundary data, even if the forcings
encountered for the forward problem are more restricted. For
example, for the usual MT forward problem forcing is restricted to
the boundaries, but more general source terms must be allowed
for to compute sensitivities. Second, capability to solve the
transposed system is required. Because the EM equations are
essentially self-adjoint, forward codes can generally be easily
amended to implement adjoint calculations (e.g., see EK12
(Section 3), and Section 7), although there can be some subtle
issues (e.g., Kelbert et al., 2008). Finally, the solver should have a
clean interface that allows interaction with higher level routines.
At a minimum these must include initialization of the solver, and
updating the PDE coefficients (which depend on the model
parameter, and the frequency), as well as actually solving the
forward or transposed equations for a particular set of sources and
boundary conditions.

Developing a separate module with standardized functionality for
the interpolation functionals used to evaluate electric and magnetic
fields at an arbitrary point within the model domain (e.g., EM field
interpolation in Fig. 1) greatly simplifies implementation of data
functionals at the interface level (see Section 5). The essential
requirement is for routines which compute interpolation functionals
λ for both primary and secondary field components, and return these
as sparse vectors in the primary field space SP . The case of the
primary (e.g., electric) field is clear; the non-zero components of λ
are the local interpolation weights. For the dual field (e.g., the
magnetic field h¼ Te), λ must incorporate the transformation
operator (T) used to compute the dual field, so that the functional
can still be applied directly to the primary field vector. Note that it is
not necessary to form the full transformation operator, as only a few
components are needed to form the dual field evaluation functional
for any location. If either interpolation functionals, or the transforma-
tion operator, depend explicitly on the model parameter some
additional sparse vectors are required for assembly of rows of Q .
Further details are provided in EK12 (Section 5.2.3).

The sparse vectors returned by EM field interpolation routines
are the basic building blocks for the non-linear data functionals ψj

(e.g., impedances), as well as the corresponding linearizations –

the rows of L and Q discussed in Section 5. The evaluation
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functionals of course depend critically on details of the numerical
grid, while computation of something like an impedance or
apparent resistivity from the interpolated electric and magnetic
field components does not. Thus, a different numerical discretiza-
tion of the problem (e.g., finite elements with a non-structured
grid) would require different interpolation routines. However, if
these were again represented as sparse vectors in the appropriate
discrete EM field spaces, higher level data functional routines (e.g.,
for calculation of impedance elements), or construction of the
corresponding linearized data functionals, would remain
unchanged. Conversely, to add new data types (e.g., inter-station
magnetic transfer functions) there is no need to revisit the
interpolation aspects of the problem.

The model parameter module consists of three clearly distin-
guishable components: (1) an encapsulated data structure which
represents m, together with methods to implement vector space
operators, including dot products; (2) the model parameter
covariance or regularization operator; (3) mappings between the
model parameter and the numerical grid. Note that to some extent
these components can be modified independently – e.g., a differ-
ent covariance implementation can be used without changes to
the other two components, and if the numerical discretization
were changed, only the mapping component would have to be
modified. Key aspects of the first two components have been
sketched in Section 3. The third component defines three routines
that interact with the interface layer. The first defines πðmÞ, the
model parameter mapping which specifies resistivity or conduc-
tivity on the numerical grid, as required to define the forward
operator. This will generally be called by the forward solver
initialization routine (initSolver). The second and third imple-
ment multiplication by the Jacobian of the model parameter
mapping Π ¼ ∂π=∂m, and its adjoint ΠT . These are required to
implement multiplication by P and Q , and their adjoints. To the
extent that the basic interpolation functionals depend on the
model parameter, it is also useful to define the restriction of
πðmÞ to specific grid elements.

7. Example: 3D EM

7.1. Numerical discretization

As specific examples, we consider application of ModEM to 3D
MT and CSEM inverse problems. Both are implemented using the
same numerical discretization modules, based on finite difference
(FD) solution of the quasi-static Maxwell's equations in the
frequency domain, in the form given by (9) on a staggered-grid
(e.g., Yee, 1966; Siripunvaraporn et al., 2002).

We begin with a summary of the discretization of the equa-
tions, following the notation of EK12 where further details are
provided. Electric fields are defined on cell edges (see Fig. 3); the
(primary) space of such discrete vector fields is denoted SP . The
dual space, denoted by SD consists of vector fields with compo-
nents defined on cell faces, representing magnetic fields. Eq. (9)
may then be written in discrete form as

½C†CþdiagðiωμsðmÞÞ�e¼ js ð12Þ

Be¼ eb; ð13Þ
where eASP , jsASP is the optional interior forcing, C : SP↦SD is the
discrete approximation of the curl operator mapping cell edge vectors
(including boundaries) to interior cell face vectors, C† : SD↦SP is the
discrete curl mapping interior cell face vectors to interior cell edges, B
extracts boundary edges, and eb gives the specified boundary data. The
interior forcing on the right-hand side of (12) is applicable to CSEM but
not MT, and is defined on the interior primary cell edges only.

The dependence of the operator coefficients on the model parameter
is made explicit in (12) through the mapping s : M↦SP , where M
is the model parameter space. Magnetic fields corresponding to an
electric field solution e can be expressed as

h¼ ð� iωμÞ�1Ce¼ Te: ð14Þ
To implement numerical discretization modules based on this

formulation, we define the basic EM field object as a derived data
type containing three separate 3D arrays (x, y, and z components),
together with a pointer to the underlying basic grid (which defines the
geometry and georeference of the staggered grid), and a tag to indicate
if the vector field is defined on the primary (edges) or dual (faces) grid.
Several variants on these basic complex vector objects are also defined,
including scalar fields (defined either on cell centers or nodes), and
allowing for real as well as complex versions of both scalars and
vectors. For example, complex scalars are used to represent electric
potentials (used in the solver for the divergence correction; Smith,
1996); a real vector can be used to represent electrical conductivity
defined on cell edges, i.e., sðmÞ in (9). We also define a sparse vector
representation for elements of SP and SD, to allow efficient represen-
tation and storage of measurement functionals. For all of the variants
of the basic vector and scalar fields there are routines for creation,
deallocation, linear algebra, dot products, and point-wise multiplica-
tion. Algebraic routines for relevant combinations of types (e.g., dot
products of sparse and full vectors, used for evaluation of field
component functionals; point-wise multiplication of complex and real
vector fields, required to compute iωμsE) are also included. Finally,
we also define a specialized data structure to store data for boundary
conditions.

The forward operator of (9) is implemented using a matrix-free
approach, and the system of linear equations is solved iteratively
with a quasi-minimum residual (QMR) scheme, with a level-1
incomplete LU decomposition for pre-conditioning. As in Smith
(1996) and Siripunvaraporn et al. (2002), a divergence correction is
applied periodically, with the Poisson-like equation solved with
pre-conditioned conjugate gradients. Everything is coded in an
object-oriented manner, so that, for example, solvers and pre-
conditioners are standalone modules which can be easily replaced
with alternative algorithms. Implementation of the transposed
solver is straightforward. Following EK12 (Section 3 and Appendix
D) the differential operator Sm ¼ C†CþdiagðiωμsðmÞÞ satisfies
STm ¼VSmV�1 where V is the diagonal matrix of integration
volume elements for SP . This means that VSm ¼ STmV is symmetric,
and to improve performance of the QMR solver we transform to
this modified system. Thus, to solve Sme¼ b we multiply b by V
before calling the solver; for solutions to STme¼ b this preliminary
step is replaced by multiplying the output of the solver by V-1.

Fig. 3. Staggered finite difference grid for the 3D MT forward problem. Electric field
components defined on cell edges are the primary EM field component, which the
PDE is formulated in terms of. The magnetic field components can be defined
naturally on the cell faces; these are the secondary EM field components in this
numerical formulation.
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Interpolation functionals are based on tri-linear splines. Sepa-
rate routines compute interpolation coefficients for vectors
defined on edges and faces, returning sparse vectors λPASP and
λDASD respectively. A third routine combines the coefficients of
λD with appropriate rows of the transformation operator of (14) to
construct the sparse magnetic field interpolation functional,
represented as a sparse vector in SP .

For an initial implementation of the model parameter module,
we have used a very simple, and classical, scheme: M consists of
the space of log conductivities defined independently on each of
the cells in the underlying numerical grid. Thus, as discussed in
EK12, a physically consistent (current conserving) form for the
mapping s : M↦SP is given by sðmÞ ¼WexpðmÞ, where W is the
matrix representing the operator that assigns the weighted average
of the four surrounding cells to each edge. The Jacobian of this
operator evaluated at the background conductivity m0 is thus

Πm0 ¼W½diagðexpðm0ÞÞ�: ð15Þ
We also require the transpose ΠT

m0
, a mapping from cell edges to

cells, computed as a weighted sum of contributions from all edges
that bound a cell.

Our basic model covariance is somewhat more novel: we have
implemented a recursive autoregressive covariance smoother,
loosely based on Purser et al. (2003a,b), which penalizes devia-
tions from a specified prior model conductivity. Horizontal and
vertical smoothings may be different; moreover, the extent of
horizontal smoothing may vary with depth. The configuration file
also allows the user to divide the model domain into disjoint
pieces, allowing smoothing to be turned off across domain
boundaries, and also allowing model parameters within a domain
to be frozen. It is worth stressing again that the model parame-
trization and covariance are completely independent of the rest of
ModEM. In practice, we envision supporting a menu of model
parametrization and covariance choices for 3D EM problems.

7.2. Interface layer

The interface layer is slightly different for MT and CSEM
implementations, starting with differing requirements for the
solution vector e. As discussed in detail in EK12, to allow evaluation
of the basic 3D MT data type, the impedance tensor, e must
contain a pair of complex vector EM field structures, corresponding
to solutions for two independent source polarizations. Similarly,
the source term b in (2) must define boundary conditions for two
forward problems, and the linearized data functionals (e.g., lj)
must represent a pair of sparse elements of SP , since calculating a
predicted impedance requires sampling solutions for both polar-
izations. On the other hand, for most CSEM problems each
observation will correspond to a single known source, so all
interface layer objects (i.e., e, b, lj) will contain only a single EM
field structure. To accommodate both of these cases we have
defined solution vector and related data types for 3D EM problems
to allow for any number of coupled source polarizations, defined
by a variable (e.g., nPol) in the data structure. This makes treat-
ment of a joint MT/CSEM problem straightforward – e.g., the array
of solution vectors e can contain solutions for both sorts of EM data,
with some having nPol¼1, and some nPol¼2, with the appropriate
case selected by reference to the transmitter dictionary.

The interface layer Forward Solver module manages forward and
adjoint solutions, including setting up sources and/or boundary
conditions for the forward problem. This module thus also must
provide slightly different functionality for the MT and CSEM problems.
For the MT forward problem, each call to fwdSolver requires two
calls to the FD solver with boundary conditions for two source
polarizations (e.g., computed by solving 2D forward problems for the
appropriate frequency, defined by iTx). Adjoint solutions similarly

require a pair of FD solver calls (now boundary conditions in both
cases are homogeneous, but sources will differ). Of course only a single
FD solver call will generally be required in the CSEM case, both for
forward and for adjoint problems. A more significant difference is that
for many CSEM problems (e.g., with point dipole sources) it is natural
to use a secondary field formulation (e.g., Alumbaugh et al., 1996) for
the forward problem. This can be quite simply implemented with
changes only to the interface level, using a support module which
solves the forward problem for a 1D background conductivity semi-
analytically. This is used in the CSEM version of the Forward Solver
module, where routine initSolver sets up the background and
anomalous conductivity and does preliminary computations for the
1D solution (using the 1D CSEM forward solver of Key (2009)), with all
results stored as private saved variables. Then, on each call to
fwdSolver the appropriate location and frequency is extracted from
the transmitter dictionary, and the 1D background solution for this
transmitter, and then the forcing for the secondary field solution, are
computed. The FD solver is then called to compute the 3D secondary
field, which is added to the 1D background solution. The total field
solution is returned by fwdSolver. All of these differences in
implementation are hidden, both from higher level sensitivity and
inversion routines, and from the lower level FD codes. Again, it is
straightforward to allow for joint inversion, combining the function-
ality required for MT and CSEM into single module.

For a simple CSEM problem, where data are direct observations
of field components, implementation of data functionals is trivial
at the interface level, as the essential functionality is already
provided by the basic interpolation functionals. In this case Lrows

is just a wrapper which calls the appropriate interpolation func-
tional (determined by the receiver dictionary), and packages the
output as a sparse vector. The forward routine dataResp is also
simple, but goes one step further to form the dot product between
the sparse vector and the solution vector, returning predicted data.
For 3D MT all data types are functions of impedance tensor
elements, which are simple non-linear functions of the raw field
components. Routine dataResp thus first computes the basic
interpolation functionals required to evaluate Ex, Ey, Hx, and Hy at
the site, and applies these to solutions for both polarizations. Then
the predicted impedance tensor can be computed, followed (if
needed) by transformations required for a particular data type
(e.g., computation of an apparent resistivity or phase). Multiple data
types are supported, with appropriate code selected by a case
statement. Lrows implements linearizations of these calculations,
forming linear combinations of the basic interpolation functionals,
following specific formulae given in EK12. Neither the tri-linear
spline interpolation coefficients (λP and λD as in Appendix 3) nor
the transformation operator T defined in (14) depend directly onm,
so Q � 0. Qrows thus simply outputs qj ¼ 0, for the MT and CSEM
implementations discussed here.

Finally, the form for P can be easily derived using results from
EK12, summarized in Section 2. Comparing (12) with (7), and
using (8) and (15)), with the identifications S0 � C†C, U� iωμI,
V� I we find the formal expression

P¼ diagð� iωμe0ÞΠm0 ¼ diagð� iωμe0ÞW½diagðexpðm0ÞÞ�; ð16Þ
where W maps from the model parameter to the primary grid.
Note however, that for the MT case the background solution vector
e0 ¼ ðe0;1; e0;2Þ contains FD solutions for two source polarizations,
and the product Pδm computed by Pmult actually results in a source
vector object which encapsulates the forcing for a pair of forward
problems, computed by first evaluating W½diagðexpðm0ÞÞ�δm
followed by pointwise multiplication by � iωμe0;k; k¼ 1;2. For
PmultT, the input is a solution vector e¼ ðe1; e2Þ. Now we
first compute iωμðdiag½e0;1�e1þdiag½e0;2�e2Þ, and then apply the
adjoint model parameter mapping ΠT

m0
, resulting in a model

parameter object. Implementation of these Solver Sensitivity
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routines is basically the same for the CSEM case, but with the
simplification of a single polarization in source and solution vectors.

7.3. Application to 3D MT and CSEM problems

We illustrate some basic capabilities of ModEM by using the
same Numerical Discretization modules to set up a single syn-
thetic example for 3D MT and 3D CSEM problems and illustrate the
relative resolution of the two methods.

Our synthetic model for land MT and CSEM is loosely inspired
by the Commer and Newman (2009) marine synthetic example in
that it is a vertical superposition of horizontally folded structures,
designed to showcase the relative strengths and weaknesses of the
two methods. It also mimics the kind of contrasts encountered in a
real land electromagnetic survey setting. In this 3D model, the
synthetic upper and lower conductive folds extend along the
strike, while the thin resistive structure is fully three-dimensional,
hosted in the upper fold with a length of 3 km along the strike.

The model domain is discretized into 50�50�50 cells, with
horizontal cell dimensions of 500 m2, logarithmically increasing
towards the edges. Cell thicknesses are 50 m in the upper 1000 m
of the model, then increasing logarithmically downwards by a
factor of 1.2, to the depth of 160 km.

The full MT impedance tensor is sampled at 182 sites (Fig. 4;
black, yellow and green circles) distributed on a regular 2D array
with site spacing of 1 km in both x and y directions. The data are

computed at 17 periods, distributed logarithmically between 0.1 s
and 1000 s, with 4 periods per decade. An error floor of 2% of
jZxy Zyxj1=2 is assigned to the full impedance tensor.

A dense receiver spacing is assumed for controlled-source EM
(Fig. 4; 500 m spacing, denoted by red circles), including a subset of
the MT sites (yellow circles) located in the vicinity of the shallow
resistive block which also serve as receivers (RX) for CSEM.

The CSEM data are computed using 28 electrical point-dipole
transmitters (TX; denoted by green circles in Fig. 4) operated at
5 periods (0.1, 0.5, 1, 5 and 10 s). The in-line (Ey) component of the
electric field is computed at each of the receivers. An error floor of
2% of jEyj is assigned to the noise free Ey data.

For 3D inversion of the MT data, we used the ModEM version of
NLCG (Fig. A1). A homogenous model with 100Ωm resistivity was
used as prior and starting model. In total, 25 NLCG iterations were
required to decrease the nRMS value (normalized Root Mean Square)
from � 23 down to 1.01. The computation was parallelized over 35
Intel processors, resulting in the run time for each NLCG iteration
(comprising 2 forward modeling and 1 gradient computation) of
� 2 min.

The 3D CSEM inversion also used a homogeneous 100Ωm
halfspace for prior and starting models. We found that 325 NLCG
iterations were required to decrease the nRMS from � 101 to
� 2:5, using 141 processors in parallel.

Results for the 2 cases are presented in Fig. 5, clearly illustrating
the relative inability of the MT method to resolve this resistive
layer. The shallow resistor is much clearer in the CSEM inversion.
Conversely, MT is better at imaging the shape of the deeper
conductor even in the middle of the array, where the MT site
locations are sparser compared to the CSEM receiver coverage. We
conclude that a joint MT-CSEM inversion would be advantageous
to harness the relative strengths of the two methods.

As can be seen from the convergence summary plots (Fig. 6),
even when the same synthetic model is employed and the same
NLCG inversion procedure applied for MT and for CSEM config-
urations, convergence behavior is very different for these two
problems. This illustrative example shows that in a practical joint
MT and CSEM inversion, some care is require to balance fits to the
two data types. Although implementation of joint MT and CSEM
inversion is in principle straightforward in ModEM (Meqbel and
Ritter, 2013), it is outside the scope of this paper.

8. Discussion and conclusions

ModEM has already proved to be a capable and efficient program
for practical 3D MT inversion (Kelbert et al., 2012; Tietze and Ritter,
2013; Meqbel et al., 2014). However, the real power of ModEM lies in
its potential as a tool for research, and for rapid development of new
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Fig. 4. The field setups used to compute the synthetic data. Black dots correspond
to MT sites and red dots to CSEM receiver locations (RX), placed in the vicinity of
the shallow resistive block, yellow dots serve as both MT and CSEM receivers. Green
dots correspond to the 28 electrical point dipole transmitters (TX) used to compute
the CSEM model responses; they also double as MT sites and CSEM receivers. There
are 182 MT sites and 325 CSEM receivers, total. (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this
article.)

Fig. 5. Center cross-sections of the inversion results of fitting the MT (middle column) and CSEM (right column) synthetic data. For comparison purposes the true model is
plotted on the left.
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applications. Translating pseudo-code of the sort shown in Figs. A1
and A2 into a ModEM inversion module is simple, since all required
operators and data objects are readily available. Thus, it would be easy
to replace the NLCG scheme we have implemented with quasi-
Newton (e.g., Newman and Boggs, 2004), or standard Gauss-Newton
variants such as OCCAM (Constable et al., 1987; Siripunvaraporn et al.,
2005), as well as more novel schemes such as the multi-frequency
hybrid inversion of Egbert (2012). ModEM thus provides a natural test-
bed for development, refinement, and comparison of inversion search
algorithms. Similarly, ModEM offers potentially great flexibility in
defining the model parametrization and regularization, simplifying
new developments and extensions in this critical direction, e.g., to
allow bounds on conductivities (Avdeev and Avdeeva, 2009), to allow
simultaneous inversion for near-surface distortion parameters (e.g.,
DeGroot-Hedlin and Constable, 2004), or to decouple the model
parameter and numerical solver grids (e.g., Commer and Newman,
2009).

In some respects ModEM has been designed specifically for
frequency domain EM geophysical problems – e.g., the structure of
data vectors reflects the transmitter/receiver structure common to
such methods. However, ModEM should be more broadly useful, in
particular providing a good starting point for development of joint
inversion schemes. For example, ModEM's data space structure
already supports multiple data types, each of which may require
solution of a different forward problem – e.g., as for the 2D MT
problem discussed in EK12, where TE and TM mode data are inverted
simultaneously. Joint inversion of EM and other sorts of geophysical
data (e.g., seismic or gravity) could be accommodated in a similar
manner. In this case there might be two separate sets of numerical
discretization modules, with possibly different grids, numerics, inter-
polation functionals, etc (see also Section 7). The interface routines
would then merge and encapsulate these, hiding the details, and even
the multiplicity of distinct physics involved. The two sorts of data
would of course have to be coupled through the model parameter,
either through some sort of constitutive relation, or through the
covariance.

Of course, there will always be limits to the generality of any
specific implementation. For example, the “generic” inversion
algorithms implemented so far assume that the model regulariza-
tion can be represented as a norm on the model space, defined by
a quadratic form Cm. More general regularization schemes would
require some modification to these inversion modules, although
these could be implemented rather simply, making use of lower

level components. Modularity and code reuse in ModEM thus
functions at multiple levels, from the numerical discretization to
implementation of specific inversion schemes.
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Appendix A. Modular linearized inversion algorithms

A wide range of gradient based inversion algorithms can be
implemented using the components described above. As examples
we summarize two schemes we have implemented: non-linear
conjugate gradients (NLCG, e.g., Press et al., 1992), and the data-
space conjugate gradient scheme (DCG) of Siripunvaraporn and
Egbert (2007).

For NLCG, we adopted the standard Polak-Ribière scheme (see Fig.
A1 for pseudo-code). For the line search, which is based on Press et al.
(1992) and Nocedal and Wright (2006, Chapter 3), we first interpolate
using a quadratic approximation; if the solution does not satisfy the
sufficient decrease (Armijo) condition (ignoring the curvature condi-
tion), we backtrack using cubic interpolation. This strategy only
requires one gradient evaluation and is efficient when such computa-
tions are expensive. The initial step size is set outside of the line
search, and adjusted automatically based on the first gradient compu-
tation; it can also be specified by the user. We have also implemented
an automatic criterion to decrease the damping parameter (ν, see
EK12) when convergence of the inversion stalls. User control of the
inversion includes specifying the initial damping parameter, the
sufficient decrease condition, and the stopping criterion.

The DCG scheme of Siripunvaraporn and Egbert (2007) is an
iterative Gauss-Newton algorithm. Briefly, the penalty functional is
linearized about a trial value of the model parameter mn, and the
minimum of the linearized functional is sought. This leads to a
system of normal equations involving cross-products of J solved
for bn with conjugate gradients (without actually forming the
normal equations). In the data-space variant we consider here,

Fig. 6. NLCG algorithm convergence for MT and CSEM configurations. Both the total penalty functional (logarithmic scale in black) and the RMS value (linear scale in red) are
plotted. Note the differences in both the run times and magnitudes, and overall behavior (steeper and smoother for the MT problem, likely because the same regularization
has a stronger effect on MT than on CSEM). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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these equations are

ðJCmJT þνIÞbn ¼ d̂n ðA:1Þ

Fig. A1. Pseudo-code for non-linear conjugate gradient (NLCG) algorithm. Notation:
f ðmÞ represents responses obtained from forward modeling; Pn and Pn' are values of
the penalty functional and its derivative at nth iteration; mn, hn , gn are vectors in
the model space; α and β represent real scalars; other symbols are as in the text.

Fig. A2. Pseudo-code for data space conjugate gradient (DCG) algorithm, with
normal equations solved in the data space. Notation: f ðmÞ represents responses
obtained from forward modeling; d̂n , bn , xk , yk , pk and rk are all vectors in the data
space; αk and βk represent real scalars; other symbols are as in the text.

mnþ1 ¼ CmJTbn: ðA:2Þ
In the DCG algorithm Eq. (A.1) is solved for bn using conjugate
gradients, and the model update is computed as in (A.2). The whole
procedure is iterated over n to achieve the desired level of misfit.
Pseudo-code for this scheme is provided in Fig. A2. Choice of the
regularization parameter, and stopping criteria for the conjugate
gradient iterations are discussed in Siripunvaraporn and Egbert
(2007). For sensitivity computations we use multiplication routines
Jmult and JmultT, described in Table 2.
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