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Abstract An examination is made of the hypothesis that the statistics of magnetic storm maximum
intensities are the realization of a lognormal stochastic process. Weighted least squares and maximum
likelihood methods are used to fit lognormal functions to −Dst storm time maxima for years 1957–2012;
bootstrap analysis is used to established confidence limits on forecasts. Both methods provide fits that
are reasonably consistent with the data; both methods also provide fits that are superior to those that
can be made with a power-law function. In general, the maximum likelihood method provides forecasts
having tighter confidence intervals than those provided by weighted least squares. From extrapolation
of maximum likelihood fits: a magnetic storm with intensity exceeding that of the 1859 Carrington event,
−Dst ≥ 850 nT, occurs about 1.13 times per century and a wide 95% confidence interval of [0.42, 2.41] times
per century; a 100 year magnetic storm is identified as having a −Dst ≥ 880 nT (greater than Carrington) but
a wide 95% confidence interval of [490, 1187] nT.

1. Introduction

A magnetic storm can be understood as the causal response of the Earth’s coupled magnetospheric-
ionospheric system to the variable and dynamic action of the solar wind [e.g., Cowley, 1995]. Scientific analysis
of magnetic storms leads to improved fundamental understanding of the Earth’s surrounding space weather
environment [e.g., Prölss, 2004]. Applied analysis of magnetic storms enables assessment and mitigation of
space weather-related hazards. Magnetic storms are associated with disruptions of over-the-horizon radio
communication, degradation in the accuracy of global positioning systems, damage to satellite electronics
and increased orbital drag, interference with geophysical surveys, and the induction of uncontrolled currents
in electric power grids that sometimes cause blackouts [e.g., Daglis, 2004]. Of particular concern are rare but
extremely intense magnetic storms [e.g., Hapgood, 2011], the effects of which [e.g., Kappenman, 2012; Cannon
et al., 2013] could have widespread deleterious economic impact [e.g., Baker et al., 2008].

The space weather index Dst is a measure of the longitudinal average of low-latitude, ground-level magnetic
disturbance. It is useful for identifying the evolutionary phases of individual magnetic storms [e.g., McPherron,
1995; Loewe and Prölss, 1997] and for compiling statistics on storm occurrence rate and intensity. For exam-
ple, the arrival at Earth of a coronal mass ejection compresses the dayside magnetopause, intensifying its
eastward directed current and generating a positive perturbation in Dst. With connection of the interplane-
tary magnetic field onto the geomagnetic field and solar wind driving of magnetospheric convection, energy
can be loaded into the westward directed magnetotail current, which generates a negative magnetic per-
turbation in Dst. During a magnetic storm, electric currents can be induced in the ionosphere, and during a
substorm, magnetospheric field-aligned currents flow into and out of the ionosphere; these currents gener-
ate magnetic field perturbations that are recorded in Dst. The main phase of a magnetic storm is defined by a
global-scale decrease in low-latitude geomagnetic field intensity [e.g., Gonzalez et al., 1994] that is generated
by the westward directed magnetospheric ring current, the intensity of which is approximately proportional
to the corresponding negative perturbation in Dst. A storm main phase can persist for a day or two, then,
with diminution in solar wind forcing, the ring current intensity eventually dissipates, low-latitude magnetic
disturbance decreases, and Dst returns to its near-zero prestorm baseline.

From analysis of historical Dst time series data (1957–2012), we quantify the occurrence rate of magnetic
storms as a function of main phase, storm maximum intensity. A plausible statistical model is required to
make extrapolated estimates of the occurrence rate of storms more intense and rarer than those observed
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Figure 1. The Dst time series, 1957–2012.

since 1957. For this purpose, a lognormal statistical process is proposed as a hypothetical model of storm
time Dst statistics. We examine the motivation for assuming a lognormal process, we test a lognormal func-
tion for consistency with the Dst data, and we compare and contrast the lognormal model with a power-law
model. Results contribute to fundamental understanding of extreme space weather events [e.g., Koons, 2001;
Crosby, 2011], and especially intense geomagnetic storms [e.g., Tsubouchi and Omura, 2007; Thomson et al.,
2011; Cliver and Dietrich, 2013]. This work is motivated by United States domestic agency [National Science and
Technology Council, 2015] and international agency [e.g., Schrijver et al., 2015] priorities and strategic plans for
the assessment and mitigation of space weather hazards [e.g., Love et al., 2014].

2. The Dst Time Series

The standard Dst index is provided by the Kyoto World Data Center in Japan. It is derived from hourly
mean, horizontal intensity geomagnetic time series collected at four observatories [Sugiura and Kamei, 1991]:
Hermanus (South African National Space Agency), Kakioka (Japan Meteorological Agency), Honolulu (U.S.
Geological Survey), and San Juan (U.S. Geological Survey). A geomagnetic disturbance time series for each
observatory is estimated by subtracting a nonstorm, quiet time baseline. The Dst time series is an average
of the individual disturbance time series from the four observatories. We use “definitive” Dst values derived
from calibrated magnetic observatory data. The Kyoto Dst index is “quantized” to the nearest 1 nT. Note that
we have chosen not to use a version of Dst corrected for magnetopause currents generated by solar wind
pressure [e.g., Burton et al., 1975] nor have we corrected for tail current [e.g., Turner et al., 2000]. While such
corrections, and others that might be proposed, are interesting and important, our focus, here, is more strictly
phenomenological; we are concerned with total magnetic storm intensity as measured by Dst regardless of
the detailed cause of storm intensity.

In Figure 1 we show the Dst time series for the years 1957–2012, a period of time that encompasses six com-
plete solar cycles: from the rise phase of solar cycle 19 through to the rise phase of cycle 24. Although this
duration does not stretch from one sunspot minimum to another minimum, all of the solar cycle phases (rise,
maximum, decline, and minimum) are represented approximately equally; thus, we have little bias in our amal-
gamation of Dst statistics across solar cycles. For 1957–2012, there are 490,896 separate hourly Dst values, and
there are no gaps or obviously erroneous values. We subsample the Dst time series for storm maxima −Dst
values (these particular Dst values are negative): paying attention to the identification of both intense mag-
netic storms (which are rare) and weak magnetic storms (which are numerous), we use a simple algorithm
that ranks and winnows the Dst data, counting all storm maxima −Dst values greater than or equal to 63 nT,
a convenience corresponding to a bin boundary from among the 10 that cover a decade of range in −Dst.
Storms with maxima less than this threshold can be difficult to distinguish from intense magnetic storms
having multistep evolution or from occasional periods of general magnetic disturbance that might precede
or follow a storm.

We note some specifics. Severe geomagnetic activity was realized over about one and a half days during
the 13–14 March 1989 storm [e.g., Allen et al., 1989], but in compiling storm maxima statistics, this storm is
counted only once with a maximum −Dst value of 589 nT; similarly, the 15–20 July 1959 storm is counted
only once with a maximum −Dst of 429 nT, etc. For the years 1957–2012, we identify 1051 separate storms
having maximum −Dst ≥ 63 nT; of these, 68 storms have a maximum −Dst value exceeding 200 nT, 21 exceed
300 nT, and only 5 exceed 400 nT. For convenience, we denote these storm maximum values as −Dstj , with
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each value corresponding to the universal time hour tj of a storm’s maximum intensity. A complete list of the
storm maximum values is given in the supporting information for this article.

3. Lognormal Statistics

We begin our discussion of statistical modeling by considering the general properties of the normal distribu-
tion. The probability density function for a normally distributed random variable x is

f (x|𝜇, 𝜎2) = 1√
2𝜋𝜎2

exp
[
−(x − 𝜇)2

2𝜎2

]
, (1)

where 𝜇 and 𝜎2 correspond to the x population mean and variance; 𝜇 and 𝜎2 are model parameters and will
be retained as such throughout this analysis. Physical processes that result from the additive superposition of
multiple underlying effects are often recorded in statistical data that are approximately normally distributed.
This relative ubiquity has foundation in one of the most important theorems of statistics: the central limit
theorem, which, in its general form, states that the arithmetic average of n-independent random variables,
each drawn from an arbitrary distribution having a mean and variance, will be normally distributed in the limit
as n approaches infinity [e.g., Feller, 1966, chapter VIII.4; Stuart and Ord, 1994, chapter 8.47].

A random positive variable x is lognormally distributed if the logarithm of x is normally distributed,

f (lnx|𝜇, 𝜎2) = 1√
2𝜋𝜎2

exp
[
−(lnx − 𝜇)2

2𝜎2

]
, (2)

where lnx denotes the natural logarithm of x and 𝜇 and 𝜎2 are now the lnx-population mean and variance,
which can still be regarded as model parameters. A change of variables for f must conserve differential
probability. In particular,

f (lnx)dlnx = f (lnx)dlnx
dx

dx = f (lnx)dx
x

= f(x)dx, (3)

where

f(x|𝜇, 𝜎2) = 1

x
√

2𝜋𝜎2
exp

[
−(lnx − 𝜇)2

2𝜎2

]
(4)

is the lognormal density function. The occurrence probability for an event with size exceeding x and drawn
from a lognormal process is given by the cumulative

F(x|𝜇, 𝜎2) = ∫
∞

x
f(𝜉|𝜇, 𝜎2)d𝜉 = 1

2
erfc

[
lnx − 𝜇√

2𝜎2

]
(5)

[Gradshteyn and Ryzhik, 1980, equation 3.321.2; Crow and Shimizu, 1988, p. 114], where erfc is the comple-
mentary error function. It is important to recognize that as for the normal distribution, a central limit theorem
applies for the lognormal distribution: the multiplication of n-independent random variables, each of which is
positive and drawn from an arbitrary distribution having a mean and variance, will be lognormally distributed
in the limit as n approaches infinity [e.g., Aitchison and Brown, 1957, chapter 2.6; Crow and Shimizu, 1988, p. 5;
Ross, 2014, p. 244].

We examine the hypothesis that the −Dstj data can be treated as a realization of a lognormal stochastic pro-
cess [e.g., Pulkkinen et al., 2008, paragraph 29]. Roughly speaking, multiplicative processes operating in three
different domains affect the statistics of magnetic storms. First, the solar cycle results from autoregressive
dynamo action, an ∼11 year quasiperiodic amplification and deamplification of poloidal solar magnetic
energy [e.g., Solanki et al., 2000] that is manifest as a modulation of sunspot number, coronal mass ejections,
and geomagnetic storm occurrence rate. As an aside, we note that statistical models for periodically modu-
lated phenomena can be parameterized in terms of an integrated average rate of occurrence [e.g., Cox and
Lewis, 1966, chapter 2.2.v]. Second, the geoeffectiveness of solar wind-magnetosphere coupling is often cal-
culated from multiplicative combinations of solar wind velocity, density, and interplanetary magnetic field
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direction and intensity [e.g., Newell et al., 2007]. While these variables are not, themselves, statistically inde-
pendent, satellite data acquired over multiple solar cycles show that solar wind density and dynamic pressure
are approximately lognormally distributed [e.g., Veselovsky et al., 2010]. Third, the dynamic evolution of a mag-
netic storm can be modeled as an autoregressive filter of solar wind forcing and an integration of previous
recent states of the magnetospheric-ionospheric system [e.g., Vassiliadis et al., 1999]. Considering, then, all
these physical processes together, the multiplicative central limit theorem could be of relevance. We empha-
size, however, that optimism should be tempered with recognition that the three physical domains do not act
independently to determine magnetic storm intensity. In the end, any practical assessment of the success or
failure of the lognormal hypothesis will be largely dependent on its consistency with the −Dstj data.

4. Fitting Models to Data

To model storm maxima −Dstj occurrence rate, we use a truncated lognormal function m that is proportional
to the density function (4),

m(−Dst|A, 𝜇, 𝜎2),= A ⋅ f(−Dst|𝜇, 𝜎2), (6)

where A is a normalizing amplitude,

A∫
∞

63
f(𝜉|𝜇, 𝜎2)d𝜉 =

N(−Dstj ≥ 63nT)
56 years

, (7)

and where N is the number of storms such that −Dstj ≥ 63 nT. We estimate model parameters {A, 𝜇, 𝜎2} by
fitting equation (6) to the−Dstj data using two different standard methods. The two resulting fits have slightly
different properties, which we compare and contrast.

First, we fit the data using a maximum likelihood (ML) method [e.g., Coles, 2001, chapter 2.6.3]. Assuming that
the data are samples from a lognormal distribution, we define an objective reward function from their joint
probability,

L(A, 𝜇, 𝜎2) =
∏

j

m(−Dstj|A, 𝜇, 𝜎2), (8)

where the product in j is over all the −Dstj data values; model parameters are obtained by maximizing L.
Second, we fit the data using a weighted least squares (WLS) method. We count the number of −Dstj data in
each of a discrete set of bin intervals having widths measured in nanotesla; we divide the counts in each by
the bin width and by the 56 year duration of the data time series; this gives us binned densities bi measured
in counts/yr/nT. As an objective loss function, we use the 𝜒2 sum of the squares of “relative errors” defined by
the residual discrepancy between each bin and model density, bi − m(−Dsti), each weighted by dividing by
the bin density bi,

𝜒2(A, 𝜇, 𝜎2) =
∑

i

[
bi − m(−Dsti)

bi

]2

(9)

[e.g., Castillo, 1988, chapter 4.6.2; Hansen et al., 2013, chapter 1.3], where summation in i is over the bins
bi ; model parameters are obtained by minimizing 𝜒2. We remark that an unweighted least squares method
would give a fit that is similar to that which can be obtained with the maximum likelihood method, assuming
normally distributed residuals [e.g., Riley, 2012; Hansen et al., 2013; chapter 1.3].

We use a bootstrap method [e.g., Efron and Tibshirani, 1993] to estimate the errors of extrapolated storm
occurrence rates and intensities. For this, the (measured, “mother”) −Dstj data are treated as a population
distribution from which samples are drawn. We randomly sample with replacement from the −Dstj data,
assembling numerous empirical data sets, each having size equal to that of the mother data set. We assume,
as is standard, that each empirical data set is a plausible sample of magnetic storm intensities that could
have been realized in the past and which might be realized in the future. We fit each empirical data set
with a separate lognormal function using either of the described maximum likelihood or weighted least
squares methods. From the set of bootstrap empirical fits, then, we estimate confidence intervals on predicted
occurrence rates and intensities.
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Figure 2. Statistical (a) densities and (b) exceedance cumulatives for
all storm maxima −Dstj data values (black) and separately for each
solar cycle (SC, gray); also shown are lognormal model fits obtained
using weighted least squares (WLS, red) and maximum likelihood
(ML, blue) methods, and a power-law model (green). In Figure 2b we
identify the cumulatives corresponding to the solar cycle durations
1957–1966 and 1967–1977.

5. Results

In Figure 2a we show histograms (black) of
binned densities for storm maxima −Dstj ≥
63 nT values from years 1957–2012, and
in Figure 2b we show the corresponding
exceedance cumulatives (black). We also
show lognormal model functions fitted by
maximum likelihood (blue) and weighted
least squares (red) methods; model param-
eters are listed in Table 1. Before we
continue, we remark that these model
parameters can be used to make extrapo-
lated estimates of storm occurrence rates
and intensities, but the accuracy of such
extrapolations is poor for storms that are
far out in the extreme-event tail of the
distribution, having intensities substan-
tially greater than the measured maximum
of −Dstj = 589 nT; in section 7 we report
confidence intervals. Similarly, since the
expected value E(x) is far below the cutoff
of 63 nT, the parameters 𝜇 and 𝜎 are sen-
sitive functions of the estimation method,
and detailed interpretation of their values
should be made with caution.

Judged visually, fitted lognormal model
functions seem to provide reasonably good
representations of the binned−Dstj data. In
more detail, however, the maximum likeli-
hood fit is very good for the lowest energy
bin, 63–79 nT, while the least squares fit is
not so good for that bin. On the other hand,
the maximum likelihood fit is not so good
for the highest energy bin, 501–631 nT,
for which there is only one count, while
the least squares fit is very good for that
bin. The 𝜒2 measure of relative discrepancy
[Press et al., 1992, chapter 14.3] between
the maximum likelihood fit and the binned

data, equation (9), would be a moderately likely statistical realization of random data, the significance proba-
bility p = 0.3504; the least squares fit would be a very likely statistical realization of random data, p → 0.9999.
On this basis, we cannot confidently reject the null hypothesis that the data are realized from a lognor-
mal process. Similar observations pertain for comparisons of the model fits with the data cumulatives. The

Table 1. Lognormal Model (Dimensional) Parameters for Maximum Likelihood
(ML) and Weighted Least Squares (WLS) Fits to −Dstj Data, Together With
Kolmogorov-Smirnov and Weighted 𝜒2 Significance p Valuesa

A E S
Method (Number/yr) (nT) (nT) p(KS) p(𝜒2)

ML 3168.58 5.42 11.79 0.0201 0.3504

WLS 82.99 45.64 44.49 0.0000 0.9999
aTo convert to the parameterization used in this analysis, 𝜇 = lnE − 1

2
𝜎2

and 𝜎2 = ln
[
1 + S2∕E2

]
.
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Kolmogorov-Smirnov D measure [Press et al., 1992, chapter 14.3] of the greatest absolute discrepancy between
the maximum likelihood fit and the data cumulatives would not be an especially likely statistical realization
of random data, the significance probability p = 0.0201, but it would be very unlikely for the least squares fit,
p → 0.0000. In contrast to the evaluation of the binned data, in judging the cumulatives we might be tempted
to reject the null hypothesis that the data are realized from a lognormal process.

It is worth emphasizing that the preceding formal and somewhat inconsistent assessments of significance
should be regarded with a practical awareness of the considerable variability in −Dstj that accompanies the
solar cycle waxing and waning of sunspots and the variable geoeffectiveness of the solar wind. In Figures 2a
and 2b we show, respectively, the data densities and cumulative for each of the six individual solar cycles
(gray). Among these, the rise of cycle 19 to the rise of cycle 20 (1957–1966) corresponds to a high number of
sunspots (solar maximum: 201.3), while the rise of 20 to rise of 21 (1967–1977) corresponds to a low number
of sunspots (solar maximum: 110.6); the present solar cycle (24) is not complete at the time of this writing.
The solar cycle subsets show substantial dispersion about the densities and cumulatives that are based on
all the data (black). Indeed, some of the misfit between the data cumulative and the lognormal model fits,
for example, for bin 251–316 nT, might be attributed to magnetic storms realized during a single solar cycle.
More generally, given the dispersion seen in the data for individual solar cycles, the lognormal fits obtained
by either maximum likelihood (blue) or least squares (red) methods might be considered rather satisfactory
representations of −Dstj .

6. Power-Law Statistics

The preceding lognormal results stand in contrast with more conventional results for a power-law distribution,
for which the probability density is

f (x|C, 𝛼) = Cx−𝛼, (10)

where 𝛼, the scaling exponent, is sometimes called the “fractal dimension,” and C is a normalization con-
stant that is defined for x larger than a threshold xmin [e.g., Newman, 2005]. Power-law distributions have been
shown to describe the occurrence statistics of many types of natural events, including earthquakes, landslides,
floods, volcanic eruptions, and solar flares [e.g., Crosby, 2011; Sachs et al., 2012]. Several attempts have
been made to model storm time geomagnetic disturbance data with power-law distributions [e.g., Love and
Gannon, 2009; Riley, 2012; Kataoka, 2013; Yermolaev et al., 2013]. In terms of the−Dstj disturbance data shown
in the log-log plot of Figure 2, a power-law function appears as a straight line (green for both density and
cumulative), yet we see in Figure 2 that the occurrence rate of the −Dstj data does not follow a straight line;
for both the 𝜒2 and Kolmogorov-Smirnov D tests, power-law fits for −Dstj ≥ 63 nT have p → 0.0000. Indeed,
a power-law can only give a reasonable fit for a small range of −Dstj values; on the other hand, the lognor-
mal distribution is a superior representation over a wide range of −Dstj values. While there is certainly room
for improvement upon the lognormal functional fit to the −Dstj data, we can confidently favor the lognormal
function over the power-law function.

Nonetheless, we might still be curious as to why the −Dstj data are not well represented by a power-law
function. Some physical systems that exhibit power-law statistics can be described in terms of self-organizing
criticality (SOC) [e.g., Turcotte, 1999; Aschwanden, 2011]. In particular, the detailed time evolution of individual
magnetic substorms caused by collapses of the magnetotail has sometimes been described in terms of SOC
dynamics [Angelopoulos et al., 1999; Chang, 1999]. Both numerical simulations of substorm dynamics [Klimas
et al., 2000] and ground-level geomagnetic data [e.g., Wanliss, 2005; Pulkkinen et al., 2006; Balasis et al., 2009]
exhibit “multifractal” power-law statistics, with 𝛼 being a function of solar wind forcing. If we accept this, then
in analyzing −Dstj data recording many years of geomagnetic activity, we are mixing data drawn from a quiet
time statistical distribution with data drawn from a broad range of storm time power-law distributions. It is
not evident that such an amalgamation could give a power-law distribution. And, indeed, the −Dstj data are
evidently not consistent with a power-law process.

For our purposes, it is worth recognizing that the tail of a lognormal distribution is not a power-law in the
extreme-event asymptotic limit. To see this, consider the defining “scale-invariant” property of the power-law
distribution: for a positive scaling factor r,

f (rx)
f (x)

= r−𝛼 for all x ∈ [xmin,∞). (11)
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Table 2. Bootstrap Results for Magnetic Storm Median Occurrence Rate and 95% Confidence
Intervals Given Different Hypothetical Storm Maximum Exceedances, −Dstj

a

−Dstj Median Rate 95% Confidence Interval
Method Example Storm (nT) (/100 years) (/100 years)

ML 100 658.09 [611.85, 706.15]

WLS 675.51 [603.72, 741.25]

ML 200 109.85 [91.78, 129.53]

WLS 108.03 [75.61, 142.62]

ML 300 34.27 [25.03, 44.41]

WLS 28.39 [13.73, 51.35]

ML 29–31 Oct 2003 383 16.26 [10.56, 22.82]

WLS 11.09 [3.94, 26.94]

ML 400 14.18 [8.98, 20.24]

WLS 9.30 [3.11, 23.97]

ML 500 6.95 [3.85, 10.88]

WLS 3.71 [0.89, 12.99]

ML 13–14 Mar 1989 589 4.03 [2.01, 6.84]

WLS 1.86 [0.33, 8.18]

ML 600 3.79 [1.87, 6.50]

WLS 1.72 [0.29, 7.76]

ML 1–2 Sept 1859 850 1.13 [0.42, 2.41]

WLS 0.36 [0.03, 2.79]
aValues for both maximum likelihood (ML) and weighted least squares (WLS) are listed.

This shows that a scaling of the independent variable x gives a scaling of the function f (x), including in the
limit x → ∞. In contrast, the corresponding extreme-value limit [e.g., Beirlant et al., 2004, chapter 2.9.2] for the
lognormal distribution is not scale-invariant,

lim
x→∞

f(rx)
f(x)

= 0. (12)

The tail of a lognormal distribution never resembles a power-law [e.g., Malevergne et al., 2011, equation (3)].
Therefore, an extrapolation of a lognormal distribution for extreme-event probabilities will give results that
are different from extrapolation of a power-law distribution [e.g., Clauset et al., 2009, Figure 5].

7. Extreme-Event Extrapolations

From fits of lognormal functions to bootstrap test samplings of the −Dstj data, we estimate median storm
occurrence rates and confidence intervals; results are summarized in Table 2. For −Dstj ≥ 200 nT exceedance
thresholds, maximum likelihood results have occurrence rates and tighter confidence intervals than corre-
sponding least squares results. More specifically, storms with intensities exceeding that of the 1989 storm,
−Dstj ≥ 589 nT, have a median maximum likelihood rate of 4.03 times per century and a 95% confidence
interval of [2.01, 6.84] times per century. Corresponding least squares indicate that storms with intensities
exceeding the 13–14 March 1989 storm occur with a median rate of 1.86 times per century, but with a (very
wide) 95% confidence interval of [0.33, 8.18] times per century. These results can be compared with those of
Love [2012, equations (20) and (21)], who applied Bayesian analysis to a Poisson model to obtain an estimated
occurrence rate and corresponding “credibility” intervals from counts of random events realized over a finite
duration of time. Applying his formulas to a count of just one event in 56 years of time, like that for the largest
−Dstj datum corresponding to the 1989 storm, we obtain an estimated occurrence rate of 1.79 times per cen-
tury with an (approximate) 95% confidence interval of [0.00, 7.14] times per century. We note that this interval
encompasses both the maximum likelihood rate estimate, 4.03 times per century, and the least squares rate
estimate, 1.86 times per century.

Extrapolated estimates of occurrence rates for even more intense magnetic storms are accompanied by even
greater uncertainty. For storms having intensities exceeding that of the 1–2 September 1859 Carrington
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Table 3. Bootstrap Results for Magnetic Storm Median Exceedance Intensity,
−Dstj , and 95% Confidence Intervals Given Different Storm Occurrence Ratesa

Once per −Dstj 95% Confidence Intervals
Method (years) (nT) (nT)

ML 10 447 [389, 515]

WLS 393 [320, 549]

ML 100 880 [697, 1146]

WLS 680 [490, 1187]
aValues for both maximum likelihood (ML) and weighted least squares

(WLS) are listed.

superstorm [Tsurutani et al., 2003; Siscoe et al., 2006; Cliver and Dietrich, 2013], −Dstj ≥ 850 nT, maximum
likelihood results have a median occurrence rate of 1.13 times per century and a 95% confidence interval of
[0.42, 2.41] times per century. Corresponding least squares results indicate a median occurrence rate of 0.36
times per century with a 95% confidence interval of [0.03, 2.79] times per century. An extrapolation from
a power-law model of the −Dstj data gives an occurrence rate for a storm with an intensity exceeding the
Carrington event at about 1.20 times per century [e.g., Riley, 2012]; this is just slightly higher than the median
rates we estimate, and well within our estimated 95% confidence intervals.

From fits of lognormal functions to bootstrap test samplings of the −Dstj data, we can also estimate mag-
netic storm exceedance intensity given a prescribed occurrence rate; results are summarized in Table 3. For
a once-per-decade or “10 year” events, maximum likelihood results indicate a 10 year median of −Dstj ≥
447 nT and a 95% confidence interval of [389, 515] nT. Corresponding least squares results indicate a 10 year
median of −Dstj ≥ 393 nT with a 95% confidence interval of [320, 549] nT. Once-per-century or “100 year”
exceedance probabilities [e.g., Koons, 2001; Thomson et al., 2011; Pulkkinen et al., 2012] are often used to define
space weather hazard mitigation standards [e.g., Fennell et al., 2001; Samuelsson, 2013; North American Electric
Reliability Corporation, 2014]. Maximum likelihood bootstrap results indicate a 100 year median of −Dstj ≥
880 nT with a 95% confidence interval of [697, 1146] nT. Corresponding least squares results indicate a
100 year median exceedance of −Dstj ≥ 680 nT with a 95% confidence interval of [490, 1187] nT.

8. Accuracy Versus Stability

In comparing the maximum likelihood and least squares lognormal fits of the −Dstj data, there is, evidently,
a trade-off between the accuracy with which fits can be made to historical extreme-event data and the sta-
bility of the forecasts that might be made of future extreme events. The maximum likelihood method we use
accurately fits most of the data, the preponderance of which record magnetic storms of weak intensity. The
weighted least squares method gives an accurate fit of the extreme-event tail of the data distribution. There-
fore, as a representation of the statistics of (past) extreme-event magnetic storms, the least squares fit might
be preferred. On the other hand, the maximum likelihood method gives confidence intervals for estimated
future storm occurrence rates and intensities that are tighter than those given by the least squares method.
This difference can be attributed to the different weightings of the data made by the two different fitting
methods. The maximum likelihood method fits all the data with equal weight, and this tends to stabilize the
model estimates, while the weighted least squares method is required to fit bins of the data with weight rela-
tive to size, and this makes the fits sensitive to rare extreme-event statistics. From these modest observations
we understand that to confidently forecast the future occurrence of extremely intense magnetic storms we
need a model that can fit data recording past magnetic storms across a wide range of intensities. Still, with
limited quantities of historical data, we predict that it will be a long time before we can substantially reduce
the uncertainty of long-term forecasts of extremely intense magnetic storms.
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Erratum

During production of the originally published version of this article, a supporting information file was inadver-
tently omitted. The file has now been provided, and this version may be considered the authoritative version
of record.
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