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[1] Thematic maps are arrays of labels, or “themes,” associated with discrete locations in space and
time. Borrowing heavily from the terrestrial remote sensing discipline, a numerical technique based on
Bayes’ theorem captures operational expertise in the form of trained theme statistics, then uses this
to automatically assign labels to solar image pixels. Ultimately, regular thematic maps of the solar corona
will be generated from high-cadence, high-resolution SUVI images, the solar ultraviolet imager slated
to fly on NOAA’s next-generation GOES-R series of satellites starting �2016. These thematic maps will
not only provide quicker, more consistent synoptic views of the sun for space weather forecasters,
but digital thematic pixel masks (e.g., coronal hole, active region, flare, etc.), necessary for a new
generation of operational solar data products, will be generated. This paper presents the mathematical
underpinnings of our thematic mapper, as well as some practical algorithmic considerations. Then,
using images from the Solar Dynamics Observatory (SDO) Advanced Imaging Array (AIA) as test data,
it presents results from validation experiments designed to ascertain the robustness of the technique
with respect to differing expert opinions and changing solar conditions.
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1. Introduction
[2] Forecasters at the NOAA Space Weather Prediction

Center (SWPC) examine solar images and identify solar
features by hand once a day, every day. The resulting hand-
drawn full sun drawings are used to identify and track
features that have potential space weather effects; e.g.,
coronal holes, which translate to high speed streams in the
solar wind, and active regions, which have the potential to
produce coronal mass ejections or flares (R. A. Steenburgh,
SWPC Forecast Office, personal communication, 2011).
This constitutes a form of thematic mapping, a process that
involves assigning a label or “theme” consistent with some
application of interest to an image pixel, or more generally,
some spatial coordinate that can be associated with avail-
able data. This label constitutes one form of information
that helps to bridge the gap between raw measurements
and the scientific understanding of an observable scene
(i.e., data→information→understanding, as described by
Richards [2005]).

[3] Representative samples of SWPC synoptic drawings
are shown in Figure 1. These are a fairly labor-intensive
formof thematicmap, whereby forecasters examine various
input data before assigning labels to solar regions based on
their expert judgment. Thematicmaps of terrestrial features
were once constructed in a similar manner, requiring many
man-hours to collect in situ measurements from the field
and register these onto a geographic coordinate system.
Today however, most terrestrial data is collected remotely
using satellites with high-resolution multispectral imagers,
and the thematic maps are generated using automatic
multichannel pixel classification algorithms on powerful
computers. Sometimes first-principle physics are used to
convert raw measurements into thematic map labels, but
more often than not it is assumed that different terrestrial
features possess statistically separable spectral signatures
provided that 1) there exist enough well-calibrated image
channels, and 2) a reasonably representative database of in
situ so-called ground truth data that can be used to train
and test a statistical classifier.
[4] “Ground truth” data for remotely sensed images of

the solar corona are not readily available, but there exists a
tremendous amount of scientific research and operational
experience interpreting solar imagery to draw on instead.
We contend that this combination of scientific knowledge
and operational experience, combined with careful exper-
imental design, can substitute for the ground truth data
normally required to train and test automated statistical
pixel classifiers. Such tools will become essential to space
weather forecasting as NOAA’s next generation GOES-R
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satellite comes online within the next few years, and begins
to return high-resolution solar images at rates never
encountered by SWPC forecasters previously.
[5] As emphasized by Richards [2005], much of the

research into automated statistical pixel labeling techni-
ques for terrestrial remote sensing draws on pioneering
work at Purdue’s Laboratory for Applications of Remote
Sensing (LARS), beginning with a simply named technical
report “On Pattern Recognition” [Cardillo and Landgrebe,
1966]. Theoretical research into new classification techni-
ques continues, but the field has become largely an applied
discipline, with various textbooks [e.g., Tso and Mather,
2009], and even commercial software packages like ENVI
[Research Systems Inc., 2004] that collect the best methodol-
ogies and present them in a digestible manner for users to
apply to their own thematic mapping problems. Image
pixel classification has in fact come to be regarded as a
“fundamental process in [terrestrial] remote sensing,
which lies at the heart of the transformation from satellite
image to usable geographic product” [Wilkinson, 2005,
p. 433]. This includes the mapping of land surfaces [e.g.,
Friedl et al., 2002; Homer et al., 2004; Bannari et al., 2006], sea
and ice surfaces [e.g., Ainsworth and Jones, 1999; Andréfouët
et al., 2003; Karvonen, 2004], cloud cover [e.g., Nair et al.,
1999; Platnick et al., 2003; Lee et al., 2004], and combina-
tions of all the above [Simpson and Keller, 1995].
[6] While much of the inspiration for the present article

was drawn from the long history of satellite-driven the-
matic mapping in terrestrial applications, it should be
acknowledged that automated image pixel classification is
by no means a novel concept in the field of solar physics.
Single-channel intensity threshold-based segmentation
algorithms have been used since some of the earliest ima-
ges of the sun became available [e.g.,McIntosh, 1972; Vaiana
et al., 1973; Timothy et al., 1975]. These have grown in

robustness and flexibility by applying histogram clustering,
region growing techniques, morphological considerations,
and allowing selective use of multisource images [e.g.,
Worden et al., 1998; Harvey and White, 1999; Preminger
et al., 2001; Qu et al., 2005; Barra et al., 2009; Krista and
Gallagher, 2009]. Mostly within the last half-decade, con-
siderable progress has been made in statistical spatial
feature recognition [e.g., LaBonte et al., 2003; Inhester et al.,
2008], multispectral feature recognition [e.g., de Wit et al.,
2006], and combinations of the two [Turmon et al., 2002, 2010].
Many of these research efforts were presented at one of a
popular ongoing series of bi-annual Solar Image Proces-
sing Workshops (i.e., SIPWork I-V), and ultimately pub-
lished in corresponding Solar Physics Journal topical issues
[Gallagher et al., 2005; Young and Ireland, 2008; Ireland and
Young, 2010]. Aschwanden [2010] and Martens et al. [2012]
both do a thorough job reviewing and summarizing recent
work in solar image analysis.
[7] Despite this large body of solar image processing

research, thematic mapping has not yet become a “funda-
mental process” in solar physics, or space weather research
and operations for that matter. This is at least in part
because it has been almost entirely motivated by, and
optimized for, specific scientific inquiry. Sophisticated
numerical tools have been designed to answer focused
scientific questions, or if expanded to address broader
problems, they still require that users be intimately familiar
with the scientific questions being addressed, and/or the
data being analyzed. They do not allow for the possibility
that a knowledgeable non-specialist, like a space weather
forecaster, might be able to derive utility from the tool, and
maybe even add to its capability. Perhaps the most limiting
characteristic of such predominantly science-driven solar
image classifiers is that they assume a single correct
answer. They generally do not allow for a more democratic,

Figure 1. Sample SWPC full-disk synoptic drawings for 7 August 2010 and 15 February 2011.
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or ensemble, solution that accounts for a broader range of
expert analyses. This is a fundamental aspect of operational
space weather forecasting.
[8] The remainder of this paper describes an expert-

supervised solar image pixel classification scheme that,
while relying on input from a variety of experts familiar
with solar imagery to train the classifier up front, ultimately
generates solar thematic maps that are more consistent
with forecasters’ operational expectations, and provides
useful information to a broad range of space weather
applications. Section 2 provides a practical description of
the theory and algorithm used to implement this thematic
mapper in an operational setting. Section 3 describes data
that is expected to serve as input to the thematic mapper.
Section 4 describes a validation experiment for the the-
maticmapper algorithm, and the results of this experiment.
Finally, we concludewith comments on the limitations of this
particular thematic mapper, possible improvements, and the
broader implications of such a tool for space weather.

2. Statistical Theory and Algorithm
Implementation
[9] Most of the following draws on long-established

statistical theory, obtainable from any number of statistics,
optimization, or image analysis textbooks [e.g., Tso and
Mather, 2009], and is presented here as a convenience for
the reader who might be interested in practical details of
our numerical implementation. For our purposes, the most
basic solar measurement is a pixel value, x, that can be
assigned a unique spatial location. Pixel values obtained
from the kth of r spectral channels, all assumed to be
contemporaneous, may be combined into a multichannel
pixel xi, where i uniquely locates the pixel on a 2D Carte-
sian grid (i.e., an image array), and

x ≡ x1 x2 ⋯ xk¼r
� �T

: ð1Þ

[10] The objective of the thematic mapper then is to assign
a theme corresponding to one of a finite set of r pixel labels,
wj, to each pixel location i given its spectral, and possibly
spatial, context. We deliberately chose an expert-supervised
classification scheme which, while requiring input during its
initial training phase, should lead to the automatic genera-
tion of thematic maps that are more consistent with the
experts’ expectations. It is similar to techniques promoted by
Turmon et al. [2002], de Wit [2006], or Turmon et al. [2010], in
that the label assigned to each multichannel pixel is that
which maximizes the posterior probability in a Bayesian
sense. In that spirit, let us start with a brief review of Bayesian
statistics.

2.1. Bayes’ Theorem
[11] In its most general form, Bayes’ Theorem is

P wjjxi
� � ¼ P xijwj

� �
P wj
� �

P xið Þ : ð2Þ

[12] In words, this states that the posterior probability
that multichannel pixel xi should be assigned theme label
wj is equal to the probability of drawing pixel vector xi
from its multivariate distribution when wj is assumed (i.e.,
the theme-conditioned probability), scaled by the ratio of
the prior probability of being labeled wj to the prior
probability of drawing pixel vector xi when no assump-
tions are made about its label. In multispectral pixel clas-
sification, P(xi) is often ignored because one is only
interested in the relative probabilities of theme member-
ship, and P(xi) is not a function of theme wj. This leaves

P wj xij Þ∝P xi wj
�� �

P wj
� �

:
�� ð3Þ

[13] Finally, if there is no a priori reason to believe a pixel
should be assigned label wj, P(wi) can be assumed to be
drawn from a uniform distribution, leaving the conditional
probability

P wj xij Þ∝P xi wj
�� �

:
�� ð4Þ

[14] Clearly the label wj maximizing the RHS of (4) also
maximizes the LHS, so it is assigned to pixel i. We refer to
this as the maximum likelihood (ML) solution from here
forward.

2.2. Supervised Classifier Training
[15] Before calculating theme-conditioned probabilities,

it is necessary to know what the probability density func-
tion (PDF) for each pixel theme looks like. We assume
these to be multivariate normal, allowing each distribution
to be parameterized by a theme-dependent mean vector mj
and covariance matrix Cj. These statistics are determined
from representative subsets of multichannel pixels that
have been assigned a theme by an expert in an offline
training phase. Once training data have been collected,
each mean vector is calculated as

mj ¼

Xnj
i¼1

xj;i

nj
; ð5Þ

where nj is the number of multichannel pixels labeled wj in
a training data set. The mean vector for each theme looks
much like the multichannel pixel vector.

mj ≡ m1 m2 ⋯ mk¼r

h iT
j

ð6Þ

Each covariance matrix is a r-dimensional generalization
of the variance, or 2nd statistical moment of a distribution
of multichannel pixel values. Using the training pixels
chosen for each pixel class, the covariance is calculated as

Cj ¼

Xnj
i¼1

xj;i � mj

h i
� xj;i � mj

h iT

nj
: ð7Þ
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[16] Note that (7) is not an unbiased estimate of the
sample covariance, since the denominator is not adjusted
to account for the reduced degrees of freedom that arise
from calculating the sample mean mj. However, if nj is
sufficiently large, the difference is negligible, and (7)
allows sample covariances to be easily and consistently
merged using standard mixture reduction (SMR) techni-
ques [Reece and Roberts, 2010].
[17] Given that xj,i and mj are column vectors of length r,

matrix multiplication rules turn the term inside the sum-
mation of (7) into a symmetric square matrix of dimension
r. The diagonal elements of Cj hold the theme-dependent
variance of each channel, while the off-diagonal elements
hold the theme-dependent covariances between each
channel. A covariance matrix for the jth class will look like

Cj ≡

V1 C1;2 ⋯ C1;r
C2;1 V2 ⋯ C2;r
⋮ ⋮ ⋱ ⋮

Cr;1 Cr;2 ⋯ Vr

2
664

3
775: ð8Þ

[18] Equation (7) guarantees that (8) will be symmetric,
and that the variances will always be positive. However, a
valid covariance matrix must also be positive-definite.
Positive definiteness simply means that all eigenvalues for
matrix Cj are positive, which is guaranteed if nj is at least
equal to r + 1. However, to avoid issues related to noisy
measurements, nj should be much larger than r + 1. It may
be desirable to manually adjust a covariance matrix, but
doing so generally removes positive definiteness. In such
cases, a “nearest” positive definite matrix can be found
[e.g., Higham, 2002], but this can be computationally
prohibitive in time-critical operations.

2.3. Conditional Probabilities
[19] Given the definitions and constraints above, the

probability of obtaining multichannel pixel xi while
assuming class label wj is

P xijwj
� � ¼ 1ffiffiffiffiffiffi

2p
p r

ffiffiffiffiffiffiffiffi
Cj
�� ��q � exp � 1

2
� xi � mj

� 	T
� C�1

j � xi � mj

� 	
 �
:

ð9Þ

[20] Here, |Cj| is the scalar-valued determinant of the
covariancematrix,Cj

�1 is the inverse of the covariancematrix,
and all other terms have been previously defined. This can be

expanded to fully represent the necessary matrix operations
in (10).

[21] The large matrix operation inside the exponent
reduces to a scalar, so P(xi|wj) is just a scalar that, given (4),
is proportional to the probability that pixel i should be
assigned label wj. The label that maximizes this probability
is assigned to pixel i, thus providing the ML thematic map
solution.

2.4. Smoothness Prior
[22] ML thematic maps are prone to noise in the form of

spatially isolated pixels that are mistakenly classified as
one solar pixel type, even though they may be surrounded
by a homogenous field of a different solar pixel type.
While this may be a perfectly legitimate phenomenon, it is
more likely that a solar pixel will be surrounded by pixels
similar to itself. To formalize this prior assumption of
smoothness, we turn to Markov Random Field (MRF)
theory. Li [2009] provides a detailed description of how one
specifies the joint probability of an MRF by maximizing
the conditional probability of each image pixel using the
labels of each pixel’s nearest neighbors. We simply restate
the end result here: given pixel i and its eight nearest
neighbors Ni, and assuming that the influence of these
neighboring pixels on pixel i is isotropic, the probability
that pixel i should be assigned label wj is

P wjjNi
� � ¼ exp aj þ bni

� �
Xr

j¼1
exp aj þ bni

� � : ð11Þ

[23] Here, r is the number of possible pixel labels, ni is
the number of pixels in neighborhood Ni that are labeled
wj, aj is a relative weight for wj, and b is an isotropic
smoothness parameter. The parameters aj and b are
defined by the user. Roughly speaking, if aj is bigger than
other weights, theme wj is more likely to be assigned to a
given pixel, and the larger the value of b, the less likely a
pixel is to be spatially isolated, resulting in a smoother
thematic map. It turns out that this smoothing is not
extremely sensitive to changes in b [Besag, 1986]. Owen
[1989] reviews a number of studies arguing for different
constraints on values for b, ultimately showing that the
utility of b < 0.7 or b > 4 is negligible.
[24] Equation (11) provides us with a prior probability

that pixel i should be assigned label wj. This can be

P xijwj

� � ¼ 1ffiffiffiffiffiffi
2p

p r
ffiffiffiffiffiffiffiffi
Cj

�� ��q � exp � 1
2
�

xi;1 � mj;1

� 	
xi;2 � mj;2

� 	
� � � xi;r � mj;r

� 	h i
i
�

V1 C1;2 � � � C1;r
C2;1 V2 � � � C2;r

..

. ..
. . .

. ..
.

Cr;1 Cr;2 � � � Vr

2
6664

3
7775

�1

j

�

xi;1 � mj;1

� 	
xi;2 � mj;2

� 	
� � � xi;r � mj;r

� 	h iT
i

2
66666666664

3
77777777775

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð10Þ
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combined with the conditional probability determined
from (9) or (10) to provide a posterior probability that pixel i
belongs to a particular theme. The theme that results in the
maximum a posteriori probability (MAP) is then assigned
to pixel i. This MAP thematic map is generally smoother
than the ML thematic map, but if the data-conditioned
probabilities are strongly suggestive that an isolated pixel
belongs to a theme that differs from its neighbors, it will
retain that label.

2.5. Iterated Conditional Modes
[25] While pixel i relies on its nearest neighbors to pro-

vide the spatial context necessary to generate prior proba-
bilities, it also provides context to its neighbors. Therefore,
if a pixel label is altered to impose smoothness constraints,
it becomes necessary to recalculate smoothness priors that
account for the changed thematic map. This constitutes a
nonlinear estimation problem, and requires some form of
iterative solver. Tso and Mather [2009] propose three possi-
ble optimization techniques: simulated annealing (SA);
maximizing posterior marginals (MPM); and iterated con-
ditional modes (ICM). We chose the latter for its simplicity
and speed. The algorithm is summarized as follows for
generating a multichannel MAP thematic map.
Begin ICM

1. Calculate class-conditional probabilities for each
pixel according to (5)–(10), then use these as initial
posterior probabilities (i.e., LHS of (3));

2. Generate a MAP thematic map by assigning each
pixel a label corresponding to the theme that max-
imizes posterior probabilities;

3. Calculate prior probabilities for each MAP thematic
map pixel using its 8 nearest neighbors according
to (11);

4. Combine class-conditional and prior probabilities
into updated posterior probabilities according to (3);

5. Repeat steps 2–4 until convergence is achieved.
End ICM
[26] Convergence is guaranteed for ICM if pixels are

processed and updated one-at-a-time. We find such
sequential processing to be unusably slow for operational
utility, so batch processing is applied (i.e., whole-image
updates), thus allowing optimized matrix processing rou-
tines to be used. This leads to a common phenomenon
whereby a proportionally small number of pixels (≪1%)
switch between two labels from one iteration to the next.
This might be acceptable if a 2nd order convergence
criterion was imposed, and experience suggests that
�10–20 iterations would be sufficient to reach such a state
of equilibrium. It is still possible, however unlikely, that
pixels oscillate betweenmore than two labels.We therefore
prefer to simply set a maximum number of iterations for
the ICM in lieu of defining higher-order convergence cri-
teria. Setting this number of iterations to zero results in the
ML thematic map solution.
[27] It should be noted that ICM only converges to a

local maximum in posterior probability space [Besag, 1986],

but given our inclination to trust data over prior assump-
tions, we do not find the added computational complexity
necessary to obtain a globally optimal solution worth the
trouble of implementing a more sophisticated solver.
Recent work in the optimization community employing a
family of graph cut algorithms that are currently on the
research frontier promises closer-to-optimal results for
difficult problems [Boykov and Kolmogorov, 2004], and may
prove useful in a future version of our algorithm.

3. Inputs and Experimental Setup
[28] The next generation of GOES weather satellites will

fly with the Solar Ultraviolet Imager (SUVI). SUVI will
return full dynamic rangemegapixel images of the sun in six
relatively narrow extreme ultraviolet (EUV) spectral chan-
nels at least once every minute. SWPC forecasters and sci-
entific modelers will be called upon to translate this flood of
information into operationally meaningful reports, warn-
ings, and predictions. This entails, among other things,
maintaining consistency in solar image pixel classification
over time, and perhaps more importantly, between on-duty
forecasters, as well as between forecasters and scientists.
Our solar thematic mapper addresses this consistency
requirement. The experiments described below, while
serving to validate our thematic map algorithm, should also
provide guidance to forecasters and scientists who may be
tasked with training, maintaining, and periodically re-eval-
uating the thematic mapper as it necessarily co-evolves with
a changing operational and scientific understanding of the
data returned from SUVI and other solar imagers.

3.1. Solar Images
[29] The SUVI instrument is not yet operational, however

its design is very similar to the Solar Dynamics Observa-
tory (SDO) Atmospheric Imaging Array (AIA). Both are
normal incidence generalized Cassegrain telescopes that
use a combination of filters and multilayer mirrors opti-
mized for similar narrow-band EUV channels to focus solar
photons onto back-illuminated CCDs [Lemen et al., 2012;
Martinez-Galarce et al., 2010]. However, there are three
important differences: (1) SDO-AIA’s mirror area per
spectral channel is �4� SUVI’s mirror area per spectral
channel; (2) SDO-AIA’s CCDs have 4096 � 4096 pixels,
while SUVI’s has 1024 � 1024 pixels; (3) SDO-AIA has four
telescopes, while SUVI has just one.
[30] Assuming a similar field of view and exposure time,

the larger mirror area and smaller pixel size of SDO-AIA
means its per-pixel signal-to-noise ratios (SNRs) will be
�1/4 SUVI’s. However, four telescopes mean SDO-AIA
can have exposures 4� longer than SUVI and still meet the
same per-channel cadence requirements, thus bringing
the two instruments’ SNRs roughly in line. Binning/
averaging SDO-AIA pixels to a similar resolution as SUVI
then results in an SNR that is �4� better.
[31] Finally, the thematic mapper assumes that all input

images are of the same solar scene, justmeasuring different
physical quantities organized by channels. That is, each
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pixel across the different channels corresponds to the same
location in space and time. Each SDO-AIA image contains
metadata that describe its orientation and position with
respect to a fixed solar coordinate system, as well as an
accurate time stamp. This information is used to center,
rotate, and rescale each image to a common point of view,
as well as correct for solar rotation when appropriate. A
representative set of these proxy images is presented in
Figure 2.
3.1.1. Solar EUV Channels
[32] SUVI’s six spectral channels are 94Å, 131Å, 171Å,

195Å, 284Å, and 304Å. The shortest wavelength channel

was chosen primarily to capture flare location and mor-
phology; the next three wavelengths capture different
aspects of quiet to active corona; the 284Å channel max-
imizes contrast between open-field coronal holes and the
surrounding closed-field corona; and the 304Å HeII
channel peers through most of the corona into the transi-
tion region and chromosphere. The SDO-AIA proxy
channels selected for this study are 94Å, 131Å, 171Å, 193Å,
211Å, and 304Å. Five of these channels match SUVI’s
channels very closely or exactly. The 211Å channel was
chosen to substitute for the SUVI 284Å channel based on a

Figure 2. A multichannel SUVI proxy image is generated from comparable SDO-AIA EUV
channels.
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limited set of visual comparisons of SDO-AIA and SOHO-
EIT images at these respective wavelengths, not for any
known similarities in plasmas that generate these spectral
lines.
[33] While each of the individual spectral channels was

chosen carefully to meet well-defined operational and
scientific objectives, in principle they all help improve
one’s ability to isolate and classify all of the solar features
just described, and more. For example, it is expected that
the longest wavelength channel will help disambiguate
dim coronal holes and filaments, the on-disk manifesta-
tion of solar prominences. So long as pixels from different
channels can be considered co-located, every channel
should help refine the classification accuracy of interesting
solar features, even if the channel wasn’t specifically
designed to do so. In reality the solar corona is a three-
dimensional structure with dominant plasma distributions
that vary by height above the photosphere, each with dif-
ferent effective temperatures to which each spectral
channel is more or less sensitive. This means that pixels
from different channels are not necessarily co-located, and
it is possible that a poorly chosen channel might reduce
classification accuracy by effectively masking a feature
below it, or even out-shining a dimmer feature above it.
This problem warrants further study that is beyond the
scope of this article. For the purpose of this study, we
simply assume a common planar photon emitting surface
for all channels.

3.1.2. Auxiliary Pseudo-Channels
[34] Occasionally it is useful to incorporate a priori

information about a given scene into a so-called pseudo-
channel. In terrestrial remote sensing, a common example
is an elevation map that might help distinguish between
spectrally similar land-cover types (e.g., an ice sheet near
sea level, and an alpine glacier). In solar imagery it is useful
to distinguish between off-disk and on-disk, so a pixel
array that consisted of zeros for off-disk, and ones for on-
disk might be included as an auxiliary image. We actually
take this a step further by assuming an extremely simple
slab-like model of the solar corona (i.e., a constant height
above the solar surface), and calculating the path length
through this volume for the look angle corresponding to
each pixel. The resulting pseudo-channel possesses a well-
defined solar disk, but also helps correct for limb effects
that arise due to the fact that detected photons are the
integration of photon emission through an optically thin
plasma. This pseudo-channel is presented in Figure 3. For
completeness we note that an empirical functional fit,
similar to a technique used byHarvey andWhite [1999], was
considered in order to remove limb effects from each
channel. We decided that, in addition to the operationally
prohibitive computational expense of implementing this in
an operational setting, the technique would not work well
with EUV images, where on-disk dynamic range can vary
by many orders of magnitude, leading to sub-optimal fits.

3.2. Training and Test Data Selection
[35] The pixel classifier described here relies on expert

judgment to assign the jth of a set of r predetermined
theme labels to a subset of image pixels. This is considered
a supervised classification scheme. We enlisted three solar
imaging experts: one an image processing and statistics
expert; one a solar physicist; and one a space weather
forecaster. First they were consulted to help define a set of
solar pixel labels that are considered both scientifically and
operationally useful, and subsequently tasked to analyze
two different solar events captured in the proxy EUV
channels and assign thematic labels to subsets of pixels.
The eight candidate pixel labels chosen for this study were:
(1) Outer Space, (2) Coronal Hole (on-disk), (3) Coronal
Hole (off-disk), (4) Quiet Corona (on-disk), (5) Quiet
Corona (off-disk), (6) Active Region, (7) Prominence, and
(8) Flare.
[36] Outer Space pixels are off-disk pixels that do not fit

into one of the other categories. The on-disk/off-disk des-
ignation for Coronal Hole andQuiet Corona pixel labels was
invented because initial studies demonstrated that more
accurate classifications ensued when this a priori differen-
tiation was implemented. On the other hand, the same
initial studies suggested that this differentiation did not
add much to the classification accuracy of Active Region,
Prominence, or Flare pixels. The application of an automatic
spectral clustering algorithm may well have eliminated the
need for this design iteration [e.g., Cheeseman and Stutz,
1996], but since our tool is designed for space weather

Figure 3. The path length (log10 km) through a simu-
lated corona with a uniform plasma density, uniform
brightness temperature, and a constant height of 1 RS
above the solar surface, serves as a pseudo-channel that
helps alleviate certain geometric artifacts in pixel
classifications.
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operations, it was deemed sensible to let categories be
defined by those with appropriate operational expertise.
[37] Each expert was provided with this list of labels, a

computerized graphical selection tool to assign labels to
pixels, some basic explanatory material, and identical data
sets that contained solar coronal images in the six EUV
channels for two flaring events selected from the SWPC
Edited Events Tables: an M-class flare on 7 August 2010;
and an X-class flare on 15 February 2011. There were three
nearly simultaneous sets of six images for each event: an

immediately pre-flare scene; a peak-flare scene; and a post-
peak-flare scene (these designations are relative to X-ray
event times listed in SWPC’s Edited Events Tables for the
dates in question, and may differ from EUV flare times).
For brevity, these are shown in Figure 4 for the 193Å
channel only. These scenes are presented for the other
channels in the auxiliary material.1

Figure 4. The SUVI proxy 193Å channel is shown for events on (left) 7 August 2010 and
(right) 15 February 2011. Events are defined as (top) pre-, (middle) peak-, and (bottom)
post-flare.

1Auxiliary materials are available in the HTML. doi:10.1029/
2012SW000780.
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[38] Once the experts labeled a statistically significant
number of pixels to generate theme-dependent means and
covariances, a series of numerical experiments were con-
ducted using different subsets of the data as training data
and test data. The first experiment combined all the
experts’ data into a single training set, generated thematic
maps, and finally compared the pixel classifications to the
same data used to train the classifier. This “in-sample”
comparison serves as a kind of upper bound on expected
accuracy, and is primarily designed to highlight limitations
related to algorithmic assumptions like distribution shape
(i.e., are the pixel value distributions really Gaussian?), and
statistical separability (i.e., are the pre-determined pixel
classes actually distinguishable given the data provided).
The next experiment generated pixel classifications using
data from one expert for training, and data obtained from
another expert for testing (pixel class statistics from the
different events were merged prior to classification). The
training and testing data were used to generate multivari-
ate metrics for subsequent analysis. This comparison pro-
vides insight into the algorithm’s sensitivity to variations in
experts’ opinions. The final experiment generated pixel
classifications using one event’s data for training, and the
other event’s data for testing (pixel class statistics from
different experts were merged prior to classification). This
comparison provides insight into the sensitivity of the
algorithm to variations in solar conditions and/or instru-
ment performance. Figure 5 shows color-coded thematic
masks that correspond to the labels assigned by all experts
after analyzing the training data scenes shown in Figure 4.
Separate thematic masks generated by each expert are
provided in the auxiliary material, but even these com-
posite thematic masks illustrate a certain lack of consis-
tency in how pixel labels are assigned by experts, a
shortcoming that, as stated earlier, our supervised classifi-
cation scheme is designed to help overcome.

4. Results and Discussion
4.1. Solar Thematic Maps
[39] The MAP thematic map solutions shown in Figure 6

were generated using input parameters aj = 0, and b = 1.
Again for the sake of brevity, we only present maps gen-
erated from pixel theme statistics accumulated from all
training data. This is because the thematic maps generated
from different sets of training data only differ in rather
small details that are best appreciated by looking at a more
detailed error analysis derived from direct comparisons
with test data (next subsection).
[40] Starting with the M-class flare event from 2010

(Figure 6, left), it is immediately apparent that the classifier
does a good job reproducing the experts’ differentiation
between non-coronal (i.e., “outer space”) and coronal
pixels, off-disk open and closed field regions, and between
on-disk and off-disk pixels in general. In fact one might
argue that the latter is overly segmented, since near-limb

active region pixels seem to transition directly into prom-
inence pixels in both the northeast and northwest sectors,
when one might expect that the active region pixels would
extend above the limb due to the 3D nature of the coronal
loops that tend to define active regions in EUV wave-
lengths. Upon closer inspection of the original images
however, it is clear in the 304Å channel that there really
are significant prominences above the limb in these loca-
tions. At this point it is worth reminding ourselves that this
does not mean that these pixels do not represent an active
region, but rather given the constraint that only one class
may be assigned to any given pixel, the algorithm has
decided that a prominence is more likely above the limb.
[41] Moving onto the solar disk, it is clear that the algo-

rithm has difficulty differentiating between coronal hole
and filament (i.e., on-disk prominence) pixels. This is not
surprising since even human observers struggle to differ-
entiate between these two features in EUV solar imagery.
Closer inspection of training data (not shown here) indi-
cates a clear bias toward assigning dimmer low-latitude
pixels the prominence/filament label by at least one expert.
The blending of statistics from the different training data
sets results in a classification ambiguity along the bound-
aries between coronal holes and quiet corona. It may prove
valuable for the different experts to discuss their dis-
agreement over these pixel classifications, and reconsider
their training data selection for future thematic maps so
that unnecessary confusion is avoided.
[42] Finally, we note that the M-class flaring region

determined by the classifier covers more solar disk area
than any expert might reasonably assign. This is a conse-
quence of the algorithm’s imperfect assumption that pixel
value distributions are Gaussian. As a result, the algorithm
struggles to place the decision boundary between active
region and flaring pixels in a place that is intuitively satis-
fying to the experts. There are two ways to address this
problem: 1) use a different algorithm that does not rely on
such rigid assumptions about pixel value distributions; or
2) invent a spectrum of additional flaring pixel labels, each
of which cover a more limited range of the brightness dis-
tribution. The former is not an option for our classifier at
this time. The latter is an option, and is in fact quite similar,
although somewhat more ad hoc, to Turmon et al. [2002,
2010].
[43] Similar statements may be made about the thematic

maps for the X-class flare event (Figure 6, right) as were
made about the M-class event. Additionally, the X-class
flare event thematic map suffers from saturation effects in
several of the EUV channels used as classifier inputs
during the peak of the flare. This is apparent in the less
well-defined boundaries of major regions of contiguous
pixel labels, and a higher number of small isolated pixel
label regions (mostly active region) randomly scattered
throughout the quiet corona. While not shown graphically
here, it turns out that higher pixel value variances that
arose in certain X-class flare event channels tended to
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cause substantial out-of-sample classification error, to the
point that the resulting thematic maps looked rather non-
physical. We discuss this result in more detail below.

4.2. Error Analysis
[44] Visual analysis of thematic maps is valuable, espe-

cially when ascertaining whether the maps match basic
operational expectations for pixel classification. However,
there is far too much information at the pixel-level for the

human eye/mind to fully process and comprehend.
Therefore we invoke a tool common to terrestrial image
classification: the so-called confusion matrix [e.g., Tso and
Mather, 2009, chapter 2]. This is typically a square matrix
where the jth row or column corresponds to the jth pixel
class. Thematic map pixel labels are compared to test data
(i.e., a set of pixel classifications for the scene obtained
independently from the classifier itself). If a thematic map
and test pixel both match the jth pixel theme, the jth

Figure 5. Manual thematic classifications for subsets of solar pixels are presented as discrete
color labels. These classificationswere determined by expert opinion using training data for events
on (left) 7 August 2010 and (right) 15 February 2011. Events are defined as (top) pre-, (middle)
peak-, and (bottom) post-flare.
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diagonal element of the confusion matrix is incremented.
If the thematic map pixel does not match the test pixel, the
confusion matrix cell at the row corresponding to the test
pixel label, and the column corresponding to the mis-
classified thematic map pixel label, is incremented. This
might also be thought of as a multioutput truth or con-
tingency table.
[45] Once complete, diagonal elements of the confusion

matrix contain the total number of true-positive

classifications. The off-diagonal elements along a row
represent the count of thematic map pixels that were
labeled according to that row, but should have been
labeled according to the column. This is a form of com-
mission, or type I, error (i.e., false-positive). The off-diag-
onal elements of a column represent the count of thematic
map pixels that should have been labeled according to that
column, but were instead labeled according to the row.
This is omission, or type II, error (i.e., false-negative). The

Figure 6. MAP thematic maps are presented using discrete color labels. These thematic maps
were generated using multivariate statistics obtained from the manual thematic classifications
collected from all experts for all events on (left) 7 August 2010 and (right) 15 February 2011.
Events are defined as (top) pre-, (middle) peak-, and (bottom) post-flare.
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sum of each column is the total number of corresponding
pixel labels in the test data; the sum of each row is the total
number of labels from the thematic map at the test data
pixel positions. Independently generated confusion
matrices may be merged by simple element-by-element
summation of pixel labels.
[46] Finally, while per-theme classification statistics and

inter-theme comparisons are important, it is also valuable
to ascertain the overall accuracy of the classifier, account-
ing for type I and II errors across multiple possible themes.
A common metric for this purpose is Cohen’s k-coefficient
(sometimes cited phonetically as “kappa-coefficient”) [e.g.,
Jones et al., 2008]:

k ¼
N
Xr

j¼1

xjj �
Xr

j¼1

xjþ � xþj
� �

N2 �
Xr

j¼1

xjþ � xþj
� � : ð12Þ

[47] Here, r is the number of columns in the confusion
matrix, xjj is the number of correct classifications for theme
j, and xj+ and x+j are the row and column totals for each
theme, respectively. N is the total number of pixels being
compared. If all automatic classifications match the test
data k = 1, while k = 0 implies that the automatic classifi-
cation was no better than a random assignment of labels to
pixels. The confusion matrices in the following tables dis-
play classification accuracy as percentages instead of pixel

counts. This facilitates inter-theme comparisons, but due to
round-off error, these percentages do not always sum to
100. However, the k-coefficient presented below each
confusion matrix is still calculated from actual pixel counts,
not percentages.
[48] Table 1 summarizes the accuracy of the classifier

when all available data is used for training and testing.
Not surprisingly for in-sample validation (comparison of
classifier output with its own training data), most theme-
specific accuracies are quite high, as is k. For the most
part, theme-specific accuracies deviate from 100% only at
transitional boundaries between similar pixel types (e.g.,
quiet corona to active region, or active region to flare).
This suggests that our assumptions of normally distributed
pixel values were appropriate, and for the training data at
least, that these theme-dependent distributions were sep-
arable. A noticeable exception to this is the classifier’s
apparent inability to classify prominences (accuracy only
�67%). In fact, it appears that the classifier struggles to
distinguish prominences from on-disk coronal holes, a
solar feature that has no known physical reason to be spa-
tially associated with prominences.
[49] One might be tempted to simply attribute this

higher degree of misclassification to the fact that both
these solar features tend to manifest as dimmer on-disk
regions in the EUV, and that this was nothing more than
an example of poor statistical separability. However, a
quick glance at Tables 2 and 3 shows us that the average
in-sample accuracy for prominence classification is

Table 1. Confusion Matrix: All Versus All (in Sample)a

Pixel Label
Outer
Space

Coronal
Hole

Coronal Hole
(Off-Disk)

Quiet
Corona

Quiet Corona
(Off-Disk)

Active
Region Prominence Flare

Outer space 100 0 0 0 0 0 0 0
Coronal hole 0 91 0 1 0 0 25 0
Coronal hole (off-disk) 0 0 97 0 0 0 0 0
Quiet corona 0 7 0 98 0 2 1 0
Quiet corona (off-disk) 0 0 1 0 98 0 7 0
Active region 0 0 0 1 0 95 0 7
Prominence 0 2 1 0 2 1 67 0
Flare 0 0 0 0 0 2 0 93

aClassification accuracies (diagonal), commission errors (rows), and omission errors (columns), are all specified as percentages of the number
of pixels manually labeled by experts. The multiclass accuracy k is still calculated from raw counts, not percentages. “In sample” implies
classifier output was tested against its own training data. k = 0.960. Bold indicates non-zero values.

Table 2. Confusion Matrix: Expert Versus Expert (in Sample)a

Pixel Label
Outer
Space

Coronal
Hole

Coronal Hole
(Off-Disk)

Quiet
Corona

Quiet Corona
(Off-Disk)

Active
Region Prominence Flare

Outer space 100 0 0 0 0 0 0 0
Coronal hole 0 93 0 1 0 0 3 0
Coronal hole (off-disk) 0 0 98 0 0 0 0 0
Quiet corona 0 5 0 98 0 1 1 0
Quiet corona (off-disk) 0 0 1 0 98 0 5 0
Active region 0 0 0 1 0 96 0 6
Prominence 0 2 0 0 2 0 92 0
Flare 0 0 0 0 0 2 0 94

aClassification accuracies (diagonal), commission errors (rows), and omission errors (columns), are all specified as percentages of the number
of pixels manually labeled by experts. The multiclass accuracy k is still calculated from raw counts, not percentages. “In sample” implies
classifier output was tested against its own training data. k = 0.978. Bold indicates non-zero values.
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actually fairly high (�92%), while the out-of-sample accu-
racy (accuracy when classifier output is compared to
independent test data) is extremely low (�41%). This is a
tell-tale sign of major discrepancies between each expert’s
training data. Upon closer inspection of the individual
experts’ training/testing data it was ascertained that one
expert tended to label certain dim on-disk pixels as
filaments (i.e., on-disk prominences), while others simply
left these pixels unlabeled. It turns out that such selection
bias shows up in the confusion matrices as an imbalance in
classification accuracy between two labels (e.g., 91% correct
coronal hole classification versus 67% correct prominence
classification), rather than both labels exhibiting similarly
reduced accuracies. Upon further examination of Tables 2
and 3, as well as closer inspection of each expert’s train-
ing data labels, a similar difference of opinion appears to
exist regarding prominences and off-disk quiet corona.
This discrepancy was not so easily discerned from the all-
data, in-sample comparisons shown in Table 1, so it would
seem that separate and independent analysis of the
experts’ pixel classifications was justified.
[50] Tables 4 and 5 describe the classifier’s performance

when the different experts’ opinions were merged, but two
independent space weather events were analyzed. The in-
sample analysis looks similar to the in-sample analysis for
all events in Table 1. This indicates that whatever dis-
agreements between the experts may exist, they are

consistent from event to event. More interesting from an
operational perspective are the out-of-sample compar-
isons. The multitheme accuracy k drops considerably;
much more than it did when different experts were com-
pared out-of-sample. This implies that, while the experts
are generally in good agreement about solar pixel labels,
something about the theme-dependent pixel value dis-
tributions changes when different events are analyzed,
leading to higher misclassification rates.
[51] The most significant change from the all-data in-

sample comparison is in the flare classification. A large
fraction of flare pixels identified by experts for one event
tend to get misclassified as active region pixels when
classified using training data from the other event. In fact,
if individual out-of-sample comparisons are studied (not
shown here), nearly 100% of the pixels that should have
been identified as flare pixels in the 2010 event were mis-
classified as active region. This misclassification is not very
symmetric (i.e., active region pixels do not get mis-
classified as flares very often), so again, this cannot be
dismissed as a lack of statistical separability. A closer
inspection of the individual events, and their respective
training data, shows that the flare-dependent mean values
are much higher for the 2011 event. This should not be
surprising since this was an X-class flare, compared to the
weaker M-class flare in the 2010 event. This extreme mis-
classification rate offers justification for including

Table 3. Confusion Matrix: Expert Versus Expert (out of Sample)a

Pixel Label
Outer
Space

Coronal
Hole

Coronal Hole
(Off-Disk)

Quiet
Corona

Quiet Corona
(Off-Disk)

Active
Region Prominence Flare

Outer space 100 0 3 0 7 0 0 0
Coronal hole 0 80 0 0 0 0 23 0
Coronal hole (off-disk) 0 0 95 0 1 0 0 0
Quiet corona 0 14 0 97 0 5 5 0
Quiet corona (off-disk) 0 0 1 0 91 0 31 0
Active region 0 0 0 2 0 92 1 9
Prominence 0 6 1 0 2 0 41 0
Flare 0 0 0 0 0 2 0 91

aClassification accuracies (diagonal), commission errors (rows), and omission errors (columns), are all specified as percentages of the number
of pixels manually labeled by experts. The multiclass accuracy k is still calculated from raw counts, not percentages. “Out of sample” implies
classifier output was tested against independent data. k = 0.925. Bold indicates non-zero values.

Table 4. Confusion Matrix: Event Versus Event (in Sample)a

Pixel Label
Outer
Space

Coronal
Hole

Coronal Hole
(Off-Disk)

Quiet
Corona

Quiet Corona
(Off-Disk)

Active
Region Prominence Flare

Outer space 100 0 0 0 0 0 0 0
Coronal hole 0 93 0 0 0 0 28 0
Coronal hole (off-disk) 0 0 97 0 0 0 0 0
Quiet corona 0 6 0 98 0 1 1 0
Quiet corona (off-disk) 0 0 1 0 98 0 6 0
Active region 0 0 0 1 0 96 0 3
Prominence 0 1 1 0 2 1 64 0
Flare 0 0 0 0 0 2 0 97

aClassification accuracies (diagonal), commission errors (rows), and omission errors (columns), are all specified as percentages of the number
of pixels manually labeled by experts. The multiclass accuracy k is still calculated from raw counts, not percentages. “In sample” implies
classifier output was tested against its own training data. k = 0.965. Bold indicates non-zero values.
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additional labels that each correspond to a different class
of solar flare event.
[52] Another point of interest is the apparent confusion

between outer space pixels and several other classes
where no such confusion existed previously. This was
difficult to explain until a careful examination of the input
images showed that there was a tremendous amount of
photon counting noise in a single frame of the 94Å channel
for the 2011 event. This does reduce the statistical separa-
bility of outer space pixels with several other classes.

5. Summary and Conclusions
[53] In summary, a Bayesian solar pixel classifier

designed to emulate a range of expert opinions was
described, validated using independent test data, and
while its general performance already meets or exceeds
many of our initial operational requirements, several
shortcomings were identified that can be easily fixed
without changing the underlying classification algorithm.
Once previously noted discrepancies between the experts’
opinions on certain pixel types are reconciled, perhaps the
improvement to consider next is adding more expert opi-
nions and events for training data. This should improve
out-of-sample comparisons significantly given the limited
set of training data considered for this study.
[54] At some point it becomes unwieldy to maintain a

database of every training pixel, from every expert, for
every event. It ismore efficient to characterize each training
set by its respective theme-dependent statistics (means,
covariances, and pixel counts for each theme), then blend
these in some optimal fashion. In fact we did this using
standard mixture reduction (SMR), with theme-dependent
pixel counts as weights. One drawback to this approach is
that it gives equal credibility to each expert, or worse,
allows a potentially unreliable expert to unduly influence
the theme-dependent statistics by simply selecting more
training pixels. Expert credibility might be described and
applied using relative weights, but this generally leads to
inconsistent theme statistics when SMR is used. Reece and
Roberts [2010] propose a solution they call generalized

covariance union (GCU) which promises to reliably gen-
erate consistent statistics.
[55] While the event versus event comparison focused

mainly on the two themes with the largest out-of-sample
performance decreases, there is clearly an overall decrease
in out-of-sample performance that would seem to suggest a
time-varying aspect of the theme-dependent statistics. This
may be due to genuine nonstationarity in the solar scene
being observed, or possibly even changes in instrument
performance.With this inmind, it might prove beneficial to
develop a recursive algorithm to blend training data that
employs some sort of forgetting factor that weighed recent
training results more than old training results. This could
be accomplished in an ad hoc fashion by simply re-scaling
the weights used in SMR or GCU by some function of time-
since-last-update. However, thewell-knownKalman Filter,
or one of its many variants, is specifically designed to do
this in an optimal manner, and is generally considered
engineering “best practice” for time-varying estimation
problems.
[56] Also, a lack of time-stationarity is often a symptom

of an insufficient number of independent inputs. Rigler
et al. [2007] demonstrated this concept by revisiting the
problem of radiation belt predictions using multi-input
linear filters. For the problem at hand, namely solar image
pixel classification, we are clearly not considering all the
relevant inputs. Part of this is a practical consideration:
NOAA requires that operational data products rely only
on operational NOAA assets, like SUVI. However, even if
non-operational data cannot be exploited to improve our
pixel classifications, we can transform existing operational
data to extract more information. One promising possibil-
ity is to use difference images in addition to the snapshots
used in this study.
[57] Finally, while every pixel analyzed in the above

results was assigned one of the preselected labels, it may be
desirable that some pixels be considered unclassifiable.
This might be for as simple a reason as a single input
channel’s pixel being flagged “bad,” in which case the
probability of membership to all classes should be set to
zero. More useful still would be the ability to specify a

Table 5. Confusion Matrix: Event Versus Event (out of Sample)a

Pixel Label
Outer
Space

Coronal
Hole

Coronal Hole
(Off-Disk)

Quiet
Corona

Quiet Corona
(Off-Disk)

Active
Region Prominence Flare

Outer space 95 0 14 0 18 0 1 0
Coronal hole 0 89 0 17 0 0 26 0
Coronal hole (off-disk) 0 0 84 0 6 0 1 0
Quiet corona 0 6 0 71 0 1 1 0
Quiet corona (off-disk) 1 0 1 0 75 1 26 0
Active region 4 0 0 9 0 98 0 75
Prominence 0 5 1 1 2 0 45 0
Flare 0 0 0 1 0 0 0 25

aClassification accuracies (diagonal), commission errors (rows), and omission errors (columns), are all specified as percentages of the number
of pixels manually labeled by experts. The multiclass accuracy k is still calculated from raw counts, not percentages. “Out of sample” implies
classifier output was tested against independent data. k = 0.783. Bold indicates non-zero values.
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minimum acceptable probability for each pixel theme,
preferably one based on the training data and robust sta-
tistics. The square root of the scalar product of the matrix
multiplication in (9) or (10), or the Mahalanobis distance
(MD), follows a chi-square distribution for r degrees of
freedom. A threshold MD could be calculated given a
specified critical value (e.g., 0.95, 0.99, etc.). If this threshold
is not met, the conditional probability is simply set to zero,
and if all conditional probabilities equal zero, the the-
matic map pixel is labeled unclassifiable. This approach
may suffer from a well-known “masking effect,” whereby
training data outliers tend to bias or inflate theme-
dependent statistics such that otherwise obvious outliers
do not exceed the threshold MD. Rousseeuw and van
Zomeren [1990] propose techniques for generating robust
theme-dependent statistics, and thereby a robust dis-
tance (RD) that should largely mitigate this problem.
[58] These improvements will serve to standardize solar

pixel classifications, increase thematic map accuracy, and
ensure compatibility with hand-drawn synoptic maps,
which play an essential role in SWPC’s daily forecasts by
integrating a variety of information into a coherent picture
of the solar environment. Future research will exploit
these improvements to investigate solar cycle effects, test
better ways to categorize flares and other solar features
that may not fit the statistical assumptions used here, and
maybe even incorporate additional non-EUV channels to
better differentiate certain solar features like filaments.
This will all be done in close collaboration with SWPC so
that the eventual real time implementation of this solar
thematic mapper can be tailored to their operational
needs. Perhaps more importantly, SWPC forecasters will
grow to understand more fully the strengths and limita-
tions of this tool as a key component of their daily forecasts,
and ultimately extend and enhance its capabilities by con-
tributing their own expertise to the refinement of its theme-
dependent statistics.
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